In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the . The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.
The theorem was proved by Simon Donaldson. This was a contribution cited for his Fields medal in 1986.
Donaldson's proof utilizes the moduli space of solutions to the anti-self-duality equations on a principal -bundle over the four-manifold . By the Atiyah–Singer index theorem, the dimension of the moduli space is given by
where , is the first Betti number of and is the dimension of the positive-definite subspace of with respect to the intersection form. When is simply-connected with definite intersection form, possibly after changing orientation, one always has and . Thus taking any principal -bundle with , one obtains a moduli space of dimension five.
This moduli space is non-compact and generically smooth, with singularities occurring only at the points corresponding to reducible connections, of which there are exactly many. Results of Clifford Taubes and Karen Uhlenbeck show that whilst is non-compact, its structure at infinity can be readily described. Namely, there is an open subset of , say , such that for sufficiently small choices of parameter , there is a diffeomorphism
The work of Taubes and Uhlenbeck essentially concerns constructing sequences of ASD connections on the four-manifold with curvature becoming infinitely concentrated at any given single point . For each such point, in the limit one obtains a unique singular ASD connection, which becomes a well-defined smooth ASD connection at that point using Uhlenbeck's removable singularity theorem.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Sir Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London. Donaldson's father was an electrical engineer in the physiology department at the University of Cambridge, and his mother earned a science degree there.
In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering ...
IEEE2020
,
We consider the problem of finding a saddle point for the convex-concave objective minxmaxyf(x)+⟨Ax,y⟩−g∗(y), where f is a convex function with locally Lipschitz gradient and g is convex and possibly non-smooth. We propose an ...
2021
,
We introduce a new primal-dual reconstruction algorithm for fluorescence and bioluminescence tomography. As often in optical tomography, image reconstruction is performed by optimizing a multi-term convex cost function. Current reconstruction methods emplo ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2011