In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck. The Ornstein–Uhlenbeck process is a stationary Gauss–Markov process, which means that it is a Gaussian process, a Markov process, and is temporally homogeneous. In fact, it is the only nontrivial process that satisfies these three conditions, up to allowing linear transformations of the space and time variables. Over time, the process tends to drift towards its mean function: such a process is called mean-reverting. The process can be considered to be a modification of the random walk in continuous time, or Wiener process, in which the properties of the process have been changed so that there is a tendency of the walk to move back towards a central location, with a greater attraction when the process is further away from the center. The Ornstein–Uhlenbeck process can also be considered as the continuous-time analogue of the discrete-time AR(1) process. The Ornstein–Uhlenbeck process is defined by the following stochastic differential equation: where and are parameters and denotes the Wiener process. An additional drift term is sometimes added: where is a constant. The Ornstein–Uhlenbeck process is sometimes also written as a Langevin equation of the form where , also known as white noise, stands in for the supposed derivative of the Wiener process. However, does not exist because the Wiener process is nowhere differentiable, and so the Langevin equation is, strictly speaking, only heuristic. In physics and engineering disciplines, it is a common representation for the Ornstein–Uhlenbeck process and similar stochastic differential equations by tacitly assuming that the noise term is a derivative of a differentiable (e.g. Fourier) interpolation of the Wiener process.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.