Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces like gravity. The effect can be seen in the drawing up of liquids between the hairs of a paint-brush, in a thin tube such as a straw, in porous materials such as paper and plaster, in some non-porous materials such as sand and liquefied carbon fiber, or in a biological cell. It occurs because of intermolecular forces between the liquid and surrounding solid surfaces. If the diameter of the tube is sufficiently small, then the combination of surface tension (which is caused by cohesion within the liquid) and adhesive forces between the liquid and container wall act to propel the liquid.
Capillary comes from the Latin word capillaris, meaning "of or resembling hair." The meaning stems from the tiny, hairlike diameter of a capillary. While capillary is usually used as a noun, the word also is used as an adjective, as in "capillary action," in which a liquid is moved along — even upward, against gravity — as the liquid is attracted to the internal surface of the capillaries.
The first recorded observation of capillary action was by Leonardo da Vinci. A former student of Galileo, Niccolò Aggiunti, was said to have investigated capillary action. In 1660, capillary action was still a novelty to the Irish chemist Robert Boyle, when he reported that "some inquisitive French Men" had observed that when a capillary tube was dipped into water, the water would ascend to "some height in the Pipe". Boyle then reported an experiment in which he dipped a capillary tube into red wine and then subjected the tube to a partial vacuum. He found that the vacuum had no observable influence on the height of the liquid in the capillary, so the behavior of liquids in capillary tubes was due to some phenomenon different from that which governed mercury barometers.
Others soon followed Boyle's lead. Some (e.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Advanced Bioengineering Methods Laboratories (ABML) offers laboratory practice and data analysis. These active sessions present a variety of techniques employed in the bioengineering field and matchin
The students understand and apply the physics of fluids, and the basics of electromagnetism and electronic schemes
Le cours traite des concepts de l'électromagnétisme et des ondes électromagnétiques.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid, gas, and plasma), and is the only state with a definite volume but no fixed shape. The density of a liquid is usually close to that of a solid, and much higher than that of a gas. Therefore, liquid and solid are both termed condensed matter.
In chemistry and physics, cohesion (), also called cohesive attraction or cohesive force, is the action or property of like molecules sticking together, being mutually attractive. It is an intrinsic property of a substance that is caused by the shape and structure of its molecules, which makes the distribution of surrounding electrons irregular when molecules get close to one another, creating electrical attraction that can maintain a microscopic structure such as a water drop.
Adhesion is the tendency of dissimilar particles or surfaces to cling to one another (cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another). The forces that cause adhesion and cohesion can be divided into several types. The intermolecular forces responsible for the function of various kinds of stickers and sticky tape fall into the categories of chemical adhesion, dispersive adhesion, and diffusive adhesion.
This thesis is dedicated to the analysis of a subclass of interfacial flows, columnlike free-interface flows, from two view angles: (i) the symmetry breaking under geometry-induced or external forces, (ii) their stability against infinitesimal disturbances ...
The effects of apparatus-induced dispersion on nonuniform, density-dependent flow in a cylindrical soil column were investigated using a finite-element model. To validate the model, the results with an analytical solution and laboratory column test data we ...
Gas shale swelling during hydraulic stimulation is one of the major challenges in unconventional gas development. It is hypothesized that the large volumetric strain upon water imbibition is a consequence of dramatic changes in capillary pressure and disjo ...