Recurrence quantification analysis (RQA) is a method of nonlinear data analysis (cf. chaos theory) for the investigation of dynamical systems. It quantifies the number and duration of recurrences of a dynamical system presented by its phase space trajectory.
The recurrence quantification analysis (RQA) was developed in order to quantify differently appearing recurrence plots (RPs), based on the small-scale structures therein. Recurrence plots are tools which visualise the recurrence behaviour of the phase space trajectory of dynamical systems:
where is the Heaviside function and a predefined tolerance.
Recurrence plots mostly contain single dots and lines which are parallel to the mean diagonal (line of identity, LOI) or which are vertical/horizontal. Lines parallel to the LOI are referred to as diagonal lines and the vertical structures as vertical lines. Because an RP is usually symmetric, horizontal and vertical lines correspond to each other, and, hence, only vertical lines are considered. The lines correspond to a typical behaviour of the phase space trajectory: whereas the diagonal lines represent such segments of the phase space trajectory which run parallel for some time, the vertical lines represent segments which remain in the same phase space region for some time.
If only a time series is available, the phase space can be reconstructed by using a time delay embedding (see Takens' theorem):
where is the time series, the embedding dimension and the time delay.
The RQA quantifies the small-scale structures of recurrence plots, which present the number and duration of the recurrences of a dynamical system. The measures introduced for the RQA were developed heuristically between 1992 and 2002 (Zbilut & Webber 1992; Webber & Zbilut 1994; Marwan et al. 2002). They are actually measures of complexity. The main advantage of the recurrence quantification analysis is that it can provide useful information even for short and non-stationary data, where other methods fail.
RQA can be applied to almost every kind of data.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers structural modeling, state space models, and the Kalman filter in time series analysis.
In chaos theory, the correlation dimension (denoted by ν) is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. For example, if we have a set of random points on the real number line between 0 and 1, the correlation dimension will be ν = 1, while if they are distributed on say, a triangle embedded in three-dimensional space (or m-dimensional space), the correlation dimension will be ν = 2. This is what we would intuitively expect from a measure of dimension.
In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for each moment in time, the times at which the state of a dynamical system returns to the previous state at , i.e., when the phase space trajectory visits roughly the same area in the phase space as at time . In other words, it is a plot of showing on a horizontal axis and on a vertical axis, where is the state of the system (or its phase space trajectory). Natural processes can have a distinct recurrent behaviour, e.g.
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart).