**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# P-adic L-function

Summary

In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic (where p is a prime number). For example, the domain could be the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbers Qp or its algebraic closure.
The source of a p-adic L-function tends to be one of two types. The first source—from which Tomio Kubota and Heinrich-Wolfgang Leopoldt gave the first construction of a p-adic L-function —is via the p-adic interpolation of special values of L-functions. For example, Kubota–Leopoldt used Kummer's congruences for Bernoulli numbers to construct a p-adic L-function, the p-adic Riemann zeta function ζp(s), whose values at negative odd integers are those of the Riemann zeta function at negative odd integers (up to an explicit correction factor). p-adic L-functions arising in this fashion are typically referred to as analytic p-adic L-functions. The other major source of p-adic L-functions—first discovered by Kenkichi Iwasawa—is from the arithmetic of cyclotomic fields, or more generally, certain Galois modules over towers of cyclotomic fields or even more general towers. A p-adic L-function arising in this way is typically called an arithmetic p-adic L-function as it encodes arithmetic data of the Galois module involved. The main conjecture of Iwasawa theory (now a theorem due to Barry Mazur and Andrew Wiles) is the statement that the Kubota–Leopoldt p-adic L-function and an arithmetic analogue constructed by Iwasawa theory are essentially the same. In more general situations where both analytic and arithmetic p-adic L-functions are constructed (or expected), the statement that they agree is called the main conjecture of Iwasawa theory for that situation. Such conjectures represent formal statements concerning the philosophy that special values of L-functions contain arithmetic information.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (1)

Bernoulli number

In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function. The values of the first 20 Bernoulli numbers are given in the adjacent table.