Concept

Magnus expansion

In mathematics and physics, the Magnus expansion, named after Wilhelm Magnus (1907–1990), provides an exponential representation of the solution of a first-order homogeneous linear differential equation for a linear operator. In particular, it furnishes the fundamental matrix of a system of linear ordinary differential equations of order n with varying coefficients. The exponent is aggregated as an infinite series, whose terms involve multiple integrals and nested commutators. Given the n × n coefficient matrix A(t), one wishes to solve the initial-value problem associated with the linear ordinary differential equation for the unknown n-dimensional vector function Y(t). When n = 1, the solution simply reads This is still valid for n > 1 if the matrix A(t) satisfies A(t1) A(t2) = A(t2) A(t1) for any pair of values of t, t1 and t2. In particular, this is the case if the matrix A is independent of t. In the general case, however, the expression above is no longer the solution of the problem. The approach introduced by Magnus to solve the matrix initial-value problem is to express the solution by means of the exponential of a certain n × n matrix function Ω(t, t0): which is subsequently constructed as a series expansion: where, for simplicity, it is customary to write Ω(t) for Ω(t, t0) and to take t0 = 0. Magnus appreciated that, since d/dt (eΩ) e−Ω = A(t), using a Poincaré−Hausdorff matrix identity, he could relate the time derivative of Ω to the generating function of Bernoulli numbers and the adjoint endomorphism of Ω, to solve for Ω recursively in terms of A "in a continuous analog of the BCH expansion", as outlined in a subsequent section. The equation above constitutes the Magnus expansion, or Magnus series, for the solution of matrix linear initial-value problem. The first four terms of this series read where [A, B] ≡ A B − B A is the matrix commutator of A and B. These equations may be interpreted as follows: Ω1(t) coincides exactly with the exponent in the scalar (n = 1) case, but this equation cannot give the whole solution.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.