Summary
In cosmology, the cosmological constant problem or vacuum catastrophe is the disagreement between the observed values of vacuum energy density (the small value of the cosmological constant) and theoretical large value of zero-point energy suggested by quantum field theory. Depending on the Planck energy cutoff and other factors, the quantum vacuum energy contribution to the effective cosmological constant is calculated to be between 50 and as much as 120 orders of magnitude greater than observed, a state of affairs described by physicists as "the largest discrepancy between theory and experiment in all of science" and "the worst theoretical prediction in the history of physics". The basic problem of a vacuum energy producing a gravitational effect was identified as early as 1916 by Walther Nernst. He predicted that the value had to be either zero or very small. In 1926, Wilhelm Lenz concluded that "If one allows waves of the shortest observed wavelengths λ ≈ 2 × 10−11 cm, ... and if this radiation, converted to material density (u/c2 ≈ 106), contributed to the curvature of the observable universe – one would obtain a vacuum energy density of such a value that the radius of the observable universe would not reach even to the Moon." After the development of quantum field theory in the 1940s, the first to address contributions of quantum fluctuations to the cosmological constant was Yakov Zel'dovich in the 1960s. In quantum mechanics, the vacuum itself should experience quantum fluctuations. In general relativity, those quantum fluctuations constitute energy that would add to the cosmological constant. However, this calculated vacuum energy density is many orders of magnitude bigger than the observed cosmological constant. Original estimates of the degree of mismatch were as high as 120 to 122 orders of magnitude; however, modern research suggests that, when Lorentz invariance is taken into account, the degree of mismatch is closer to 60 orders of magnitude.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.