Forest ecology is the scientific study of the interrelated patterns, processes, flora, fauna and ecosystems in forests. The management of forests is known as forestry, silviculture, and forest management. A forest ecosystem is a natural woodland unit consisting of all plants, animals, and micro-organisms (Biotic components) in that area functioning together with all of the non-living physical (abiotic) factors of the environment.
Forests have an enormously important role to play in the global ecosystem. Forests produce approximately 28% of the Earth's oxygen (the vast majority being created by oceanic plankton), they also serve as homes for millions of people, and billions depend on forests in some way. Likewise, a large proportion of the world's animal species live in forests. Forests are also used for economic purposes such as fuel and wood products. Forest ecology therefore has a great impact upon the whole biosphere and human activities that are sustained by it.
Forests are studied at a number of organisational levels, from the individual organism to the ecosystem. However, as the term forest connotes an area inhabited by more than one organism, forest ecology most often concentrates on the level of the population, community or ecosystem. Logically, trees are an important component of forest research, but the wide variety of other life forms and abiotic components in most forests means that other elements, such as wildlife or soil nutrients, are also crucial components.
Forest ecology shares characteristics and methodological approaches with other areas of terrestrial plant ecology, however, the presence of trees makes forest ecosystems and their study unique in numerous ways due to the potential for a wide variety of forest structures created by the uniquely large size and height of trees compared with other terrestrial plants.
Since trees can grow larger than other plant life-forms, there is the potential for a wide variety of forest structures (or physiognomies).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students will learn the fundamentals in ecology with the goal to perceive the environment beyond its physical and chemical characteristics. Starting from basic concepts, they will acquire mechanis
Close to nature forestry is a management approach treating forest as an ecological system performing multiple functions. Close to nature silviculture tries to achieve the management objectives with minimum necessary human intervention aimed at accelerating the processes that nature would do by itself more slowly. It works with natural populations of trees, ongoing processes and existing structures using cognitive approach, as in the case of uneven-aged forest (Plenterwald).
Forest management is a branch of forestry concerned with overall administrative, legal, economic, and social aspects, as well as scientific and technical aspects, such as silviculture, protection, and forest regulation. This includes management for timber, aesthetics, recreation, urban values, water, wildlife, inland and nearshore fisheries, wood products, plant genetic resources, and other forest resource values. Management objectives can be for conservation, utilisation, or a mixture of the two.
Silviculture is the practice of controlling the growth, composition/structure, as well as quality of forests to meet values and needs, specifically timber production. The name comes from the Latin silvi- ('forest') and culture ('growing'). The study of forests and woods is termed silvology. Silviculture also focuses on making sure that the treatment(s) of forest stands are used to conserve and improve their productivity. Generally, silviculture is the science and art of growing and cultivating forest [crops], based on a knowledge of silvics .
As air temperature and vapor pressure deficit (VPD) increase continuously, forests are losing more water through evapotranspiration, with large consequences for local and global hydrological cycles. In regions with high vegetation cover, soil warming can b ...
Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack ...
Nature Portfolio2024
, ,
The conservation and restoration of forest ecosystems require detailed knowledge of the native plant compositions. Here, we map global forest tree composition and assess the impacts of historical forest cover loss and climate change on trees. The global oc ...