Astronomia nova (English: New Astronomy, full title in original Latin: Astronomia Nova ΑΙΤΙΟΛΟΓΗΤΟΣ seu physica coelestis, tradita commentariis de motibus stellae Martis ex observationibus G.V. Tychonis Brahe) is a book, published in 1609, that contains the results of the astronomer Johannes Kepler's ten-year-long investigation of the motion of Mars.
One of the most significant books in the history of astronomy, the Astronomia nova provided strong arguments for heliocentrism and contributed valuable insight into the movement of the planets. This included the first mention of the planets' elliptical paths and the change of their movement to the movement of free floating bodies as opposed to objects on rotating spheres. It is recognized as one of the most important works of the Scientific Revolution.
Prior to Kepler, Nicolaus Copernicus proposed in 1543 that the Earth and other planets orbit the Sun. The Copernican model of the Solar System was regarded as a device to explain the observed positions of the planets rather than a physical description.
Kepler sought for and proposed physical causes for planetary motion. His work is primarily based on the research of his mentor, Tycho Brahe. The two, though close in their work, had a tumultuous relationship. Regardless, in 1601 on his deathbed, Brahe asked Kepler to make sure that he did not "die in vain," and to continue the development of his model of the Solar System. Kepler would instead write the Astronomia nova, in which he rejects the Tychonic system, as well as the Ptolemaic system and the Copernican system. Some scholars have speculated that Kepler's dislike for Brahe may have had a hand in his rejection of the Tychonic system and formation of a new one.
By 1602, Kepler set to work on determining the orbit pattern of Mars, keeping David Fabricius informed of his progress. He suggested the possibility of an oval orbit to Fabricius by early 1604, though was not believed. Later in the year, Kepler wrote back with his discovery of Mars's elliptical orbit.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Copernican heliocentrism is the astronomical model developed by Nicolaus Copernicus and published in 1543. This model positioned the Sun at the center of the Universe, motionless, with Earth and the other planets orbiting around it in circular paths, modified by epicycles, and at uniform speeds. The Copernican model displaced the geocentric model of Ptolemy that had prevailed for centuries, which had placed Earth at the center of the Universe.
Aristotelian physics is the form of natural science or natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial including all motion (change with respect to place), quantitative change (change with respect to size or number), qualitative change, and substantial change ("coming to be" [coming into existence, 'generation'] or "passing away" [no longer existing, 'corruption']).
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
Covers the Kepler Laws, orbital motion, reduced mass, and orbital periods.
, ,
A novel approach for robust controller synthesis, which models uncertainty as an elliptical set, is proposed in the paper. Given a set of frequency response functions of linear time-invariant (LTI) multiple-input multiple-output (MIMO) systems, the approac ...
2023
Kepler Concordia, a new scientific and musical instrument enabling players to explore the solar system and other data within immersive extended-reality (XR) platforms, is being designed by a diverse team of musicians, artists, scientists and engineers usin ...