In chemistry, many authors consider an organic compound to be any chemical compound that contains carbon-hydrogen or carbon-carbon bonds, however, some authors consider an organic compound to be any chemical compound that contains carbon. The definition of "organic" versus "inorganic" varies from author to author, and is a topic of debate. For example, methane () is considered organic, but whether some other carbon-containing compounds are organic or inorganic varies from author to author, for example halides of carbon without carbon-hydrogen and carbon-carbon bonds (e.g. carbon tetrachloride ), and certain compounds of carbon with nitrogen and oxygen (e.g. cyanide ion , hydrogen cyanide HCN, chloroformic acid and carbonate ion ).
Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The study of the properties, reactions, and syntheses of organic compounds comprise the discipline known as organic chemistry. For historical reasons, a few classes of carbon-containing compounds (e.g., carbonate salts and cyanide salts), along with a few other exceptions (e.g., carbon dioxide, and even hydrogen cyanide despite the fact it contains a carbon-hydrogen bond), are generally considered inorganic. Other than those just named, little consensus exists among chemists on precisely which carbon-containing compounds are excluded, making any rigorous definition of an organic compound elusive.
Although organic compounds make up only a small percentage of Earth's crust, they are of central importance because all known life is based on organic compounds. Living things incorporate inorganic carbon compounds into organic compounds through a network of processes (the carbon cycle) that begins with the conversion of carbon dioxide and a hydrogen source like water into simple sugars and other organic molecules by autotrophic organisms using light (photosynthesis) or other sources of energy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In chemistry, a heteroatom () is, strictly, any atom that is not carbon or hydrogen. In practice, the term is usually used more specifically to indicate that non-carbon atoms have replaced carbon in the backbone of the molecular structure. Typical heteroatoms are nitrogen (N), oxygen (O), sulfur (S), phosphorus (P), chlorine (Cl), bromine (Br), and iodine (I), as well as the metals lithium (Li) and magnesium (Mg). It can also be used with highly specific meanings in specialised contexts.
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. Oxygen is Earth's most abundant element, and after hydrogen and helium, it is the third-most abundant element in the universe. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O2.
Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Familiariser l'étudiant avec le travail au laboratoire. Travailler de façon quantitative et/ou qualitative.
TP réalisés en relation avec les cours de chimie de 1ere année et complémentaires avec le c
Évaluation de la qualité d'une rivière en utilisant des méthodes d'observation ainsi que des méthodes physico-chimiques et biologiques. Collecte d'échantillons sur le terrain et analyses de laboratoir
Understanding process and role of biomineralization (minerals formed by living organisms) in context of Earth's evolution,global chemical cycles, climatic changes and remediation.
Covers gas/particle partitioning of inorganic compounds and organic compounds, aerosol water content, photochemical production of OH, and nitrate aerosols.
Cyclic sulfones have demonstrated important applications in drug discovery. However, the catalytic and enantioselective synthesis of chiral cyclic sulfones remains challenging. Herein, we develop nickel-catalyzed regiodivergent and enantioselective hydroal ...
Wiley-V C H Verlag Gmbh2024
, ,
A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxy ...
JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4 '-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) is a hydrolytically stable flexible metal-organic framework. Owing to its unusual adsorptive properties, JUK-8 can be considere ...