Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper proposes a novel grapheme-to-phoneme (G2P) conversion approach where first the probabilistic relation between graphemes and phonemes is captured from acoustic data using Kullback-Leibler divergence based hidden Markov model (KL-HMM) system. Then ...
In this paper, we analyze the confusions patterns at three places in the hybrid phoneme recognition system. The confusions are analyzed at the pronunciation, the posterior probability, and the phoneme recognizer levels. The confusions show significant stru ...
The AMI Meeting Corpus is a multi-modal data set consisting of 100 hours of meeting recordings. It is being created in the context of a project that is developing meeting browsing technology and will eventually be released publicly. Some of the meetings it ...
In this paper, we analyze the confusions patterns at three places in the hybrid phoneme recognition system. The confusions are analyzed at the pronunciation, the posterior probability, and the phoneme recognizer levels. The confusions show significant stru ...
The AMI Meeting Corpus is a multi-modal data set consisting of 100 hours of meeting recordings. It is being created in the context of a project that is developing meeting browsing technology and will eventually be released publicly. Some of the meetings it ...
In this report, we present preliminary experiments towards automatic inference and evaluation of pronunciation models based on multiple utterances of each lexicon word and their given baseline pronunciation model (baseform phonetic transcription). In the p ...
In this paper, we propose a simple approach to jointly model both grapheme and phoneme information using Kullback-Leibler divergence based HMM (KL-HMM) system. More specifically, graphemes are used as subword units and phoneme posterior probabilities estim ...
The state-of-the-art automatic speech recognition (ASR) systems typically use phonemes as subword units. In this work, we present a novel grapheme-based ASR system that jointly models phoneme and grapheme information using Kullback-Leibler divergence-based ...
Gradient boosting is a machine learning method, that builds one strong classifier from many weak classifiers. In this work, an algorithm based on gradient boosting is presented, that detects event-related potentials in single electroencephalogram (EEG) tri ...