In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly (for example in the case of an integral operator), and may be extended so as to act on related objects (an operator that acts on functions may act also on differential equations whose solutions are functions that satisfy the equation). See Operator (physics) for other examples.
The most basic operators are linear maps, which act on vector spaces. Linear operators refer to linear maps whose domain and range are the same space, for example to .
Such operators often preserve properties, such as continuity. For example, differentiation and indefinite integration are linear operators; operators that are built from them are called differential operators, integral operators or integro-differential operators.
Operator is also used for denoting the symbol of a mathematical operation. This is related with the meaning of "operator" in computer programming, see operator (computer programming).
Linear operator
The most common kind of operator encountered are linear operators. Let U and V be vector spaces over a field K. A mapping A: U → V is linear iffor all x, y in U and for all α, β in K.
This means that a linear operator preserves vector space operations, in the sense that it does not matter whether you apply the linear operator before or after the operations of addition and scalar multiplication. In more technical words, linear operators are morphisms between vector spaces.
In the finite-dimensional case linear operators can be represented by matrices in the following way. Let be a field, and and be finite-dimensional vector spaces over . Let us select a basis in and in .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide a basic knowledge of the stochastic calculus of variations with respect to the Brownian motion. A variety of applications will be presented including the regularity of probabi
This course is an introduction to the spectral theory of linear operators acting in Hilbert spaces. The main goal is the spectral decomposition of unbounded selfadjoint operators. We will also give el
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science). This article considers mainly linear differential operators, which are the most common type. However, non-linear differential operators also exist, such as the Schwarzian derivative.
Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus. When applied to a field (a function defined on a multi-dimensional domain), it may denote any one of three operations depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field (or sometimes of a vector field, as in the Navier–Stokes equations); the divergence of a vector field; or the curl (rotation) of a vector field.
In mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x.
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C-1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C-l extension theorem by ...
We study the regularity of the probability density function of the supremum of the solution to the linear stochastic heat equation. Using a general criterion for the smoothness of densities for locally nondegenerate random variables, we establish the smoot ...