Concept

Lawvere theory

In , a Lawvere theory (named after American mathematician William Lawvere) is a that can be considered a categorical counterpart of the notion of an equational theory. Let be a of the category FinSet of finite sets and functions. Formally, a Lawvere theory consists of a L with (strictly associative) finite s and a strict identity-on-objects preserving finite products. A model of a Lawvere theory in a category C with finite products is a finite-product preserving functor M : L → C. A morphism of models h : M → N where M and N are models of L is a natural transformation of functors. A map between Lawvere theories (L, I) and (L′, I′) is a finite-product preserving functor that commutes with I and I′. Such a map is commonly seen as an interpretation of (L, I) in (L′, I′). Lawvere theories together with maps between them form the category Law. Variations include multisorted (or multityped) Lawvere theory, infinitary Lawvere theory, and finite-product theory.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.