Summary
In electronics, a linear regulator is a voltage regulator used to maintain a steady voltage. The resistance of the regulator varies in accordance with both the input voltage and the load, resulting in a constant voltage output. The regulating circuit varies its resistance, continuously adjusting a voltage divider network to maintain a constant output voltage and continually dissipating the difference between the input and regulated voltages as waste heat. By contrast, a switching regulator uses an active device that switches on and off to maintain an average value of output. Because the regulated voltage of a linear regulator must always be lower than input voltage, efficiency is limited and the input voltage must be high enough to always allow the active device to drop some voltage. Linear regulators may place the regulating device in parallel with the load (shunt regulator) or may place the regulating device between the source and the regulated load (a series regulator). Simple linear regulators may only contain as little as a Zener diode and a series resistor; more complicated regulators include separate stages of voltage reference, error amplifier and power pass element. Because a linear voltage regulator is a common element of many devices, single-chip regulators ICs are very common. Linear regulators may also be made up of assemblies of discrete solid-state or vacuum tube components. Despite their name, linear regulators are non-linear circuits because they contain non-linear components (such as Zener diodes, as shown below in the simple shunt regulator) and because the output voltage is ideally constant (and a circuit with a constant output that doesn't depend on its input is a non-linear circuit.) The transistor (or other device) is used as one half of a voltage divider to establish the regulated output voltage. The output voltage is compared to a reference voltage to produce a control signal to the transistor which will drive its gate or base. With negative feedback and good choice of compensation, the output voltage is kept reasonably constant.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
MICRO-709: Power management
The objective of this course is to discuss the state-of-the-art in low-power analog and digital system design, with special emphasis on transistor level measures to limit and to control the power diss
MICRO-211: Analog circuits and systems
This course introduces the analysis and design of linear analog circuits based on operational amplifiers. A Laplace early approach is chosen to treat important concepts such as time and frequency resp
Show more