Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Margin of errorThe margin of error is a statistic expressing the amount of random sampling error in the results of a survey. The larger the margin of error, the less confidence one should have that a poll result would reflect the result of a census of the entire population. The margin of error will be positive whenever a population is incompletely sampled and the outcome measure has positive variance, which is to say, whenever the measure varies. The term margin of error is often used in non-survey contexts to indicate observational error in reporting measured quantities.
Scientific controlInformal improvements in any process or enquiry have been made by comparison between what was done previously and the new method for thousands of years. A scientific control is a modern formal experiment or observation designed to minimize the effects of variables other than the independent variable (i.e. confounding variables). This increases the reliability of the results, often through a comparison between control measurements and the other measurements. Scientific controls are a part of the scientific method.
Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
Experimental uncertainty analysisExperimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity. The model used to convert the measurements into the derived quantity is usually based on fundamental principles of a science or engineering discipline. The uncertainty has two components, namely, bias (related to accuracy) and the unavoidable random variation that occurs when making repeated measurements (related to precision).