The environmental effects of irrigation relate to the changes in quantity and quality of soil and water as a result of irrigation and the subsequent effects on natural and social conditions in river basins and downstream of an irrigation scheme. The effects stem from the altered hydrological conditions caused by the installation and operation of the irrigation scheme.
Amongst some of these problems is depletion of underground aquifers through overdrafting. Soil can be over-irrigated due to poor distribution uniformity or management wastes water, chemicals, and may lead to water pollution. Over-irrigation can cause deep drainage from rising water tables that can lead to problems of irrigation salinity requiring watertable control by some form of subsurface land drainage. However, if the soil is under irrigated, it gives poor soil salinity control which leads to increased soil salinity with the consequent buildup of toxic salts on the soil surface in areas with high evaporation. This requires either leaching to remove these salts and a method of drainage to carry the salts away. Irrigation with saline or high-sodium water may damage soil structure owing to the formation of alkaline soil.
An irrigation scheme draws water from groundwater, rivers, lakes or overland flow, and distributes it over a certain area. Hydrological, or direct, effects of doing this include reduction in downstream river flow, increased evaporation in the irrigated area, increased level in the water table as groundwater recharge in the area is increased and flow increased in the irrigated area. Likewise, irrigation has immediate effects on the provision of moisture to the atmosphere, inducing atmospheric instabilities and increasing downwind rainfall, or in other cases modifies the atmospheric circulation, delivering rain to different downwind areas. Increases or decreases in irrigation are a key area of concern in precipitationshed studies, that examine how significant modifications to the delivery of evaporation to the atmosphere can alter downwind rainfall.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course aims at teaching the fundamentals of both irrigation and drainage techniques with particular attention to the soil water balance and related management, the materials, the construction meth
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
Together, we will continue our exploration of the theme of water by building a set of fountains that we will later attempt to integrate into a domestic project for the port of Basel. The focus will be
Alkali, or Alkaline, soils are clay soils with high pH (greater than 8.5), a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity.
The residual sodium carbonate (RSC) index of irrigation water or soil water is used to indicate the alkalinity hazard for soil. The RSC index is used to find the suitability of the water for irrigation in clay soils which have a high cation exchange capacity. When dissolved sodium in comparison with dissolved calcium and magnesium is high in water, clay soil swells or undergoes dispersion which drastically reduces its infiltration capacity. In the dispersed soil structure, the plant roots are unable to spread deeper into the soil due to lack of moisture.
Drip irrigation or trickle irrigation is a type of micro-irrigation system that has the potential to save water and nutrients by allowing water to drip slowly to the roots of plants, either from above the soil surface or buried below the surface. The goal is to place water directly into the root zone and minimize evaporation. Drip irrigation systems distribute water through a network of valves, pipes, tubing, and emitters.
Discusses modeling water transfers with the Richards equation, including soil hydraulic functions, numerical methods, boundary conditions, and irrigation impact.
Well beyond the impact of climate change, anthropogenic modifications of the Vietnam Mekong Delta's ecosystems have resulted in environmental degradation and subsequent loss in ecosystems. The environmental impacts include but are not limited to accelerate ...
Agricultural production in arid and semi-arid regions is particularly vulnerable to climate change, which, combined with projected food requirements, makes the sustainable management of water resources critical to ensure national and global food security. ...
This study develops approximate analytical solutions for seawater extent in unconfined coastal aquifers considering unsaturated flow, and assuming steady-state, sharp-interface conditions, for both constant flux (flux-controlled aquifers) and constant head ...