In artificial intelligence research, commonsense knowledge consists of facts about the everyday world, such as "Lemons are sour", or "Cows say moo", that all humans are expected to know. It is currently an unsolved problem in Artificial General Intelligence. The first AI program to address common sense knowledge was Advice Taker in 1959 by John McCarthy.
Commonsense knowledge can underpin a commonsense reasoning process, to attempt inferences such as "You might bake a cake because you want people to eat the cake." A natural language processing process can be attached to the commonsense knowledge base to allow the knowledge base to attempt to answer questions about the world. Common sense knowledge also helps to solve problems in the face of incomplete information. Using widely held beliefs about everyday objects, or common sense knowledge, AI systems make common sense assumptions or default assumptions about the unknown similar to the way people do. In an AI system or in English, this is expressed as "Normally P holds", "Usually P" or "Typically P so Assume P". For example, if we know the fact "Tweety is a bird", because we know the commonly held belief about birds, "typically birds fly," without knowing anything else about Tweety, we may reasonably assume the fact that "Tweety can fly." As more knowledge of the world is discovered or learned over time, the AI system can revise its assumptions about Tweety using a truth maintenance process. If we later learn that "Tweety is a penguin" then truth maintenance revises this assumption because we also know "penguins do not fly".
Commonsense reasoning
Commonsense reasoning simulates the human ability to use commonsense knowledge to make presumptions about the type and essence of ordinary situations they encounter every day, and to change their "minds" should new information come to light. This includes time, missing or incomplete information and cause and effect. The ability to explain cause and effect is an important aspect of explainable AI.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the history of artificial intelligence, an AI winter is a period of reduced funding and interest in artificial intelligence research. The field has experienced several hype cycles, followed by disappointment and criticism, followed by funding cuts, followed by renewed interest years or even decades later. The term first appeared in 1984 as the topic of a public debate at the annual meeting of AAAI (then called the "American Association of Artificial Intelligence").
A knowledge base (KB) is a set of sentences, each sentence given in a knowledge representation language, with interfaces to tell new sentences and to ask questions about what is known, where either of these interfaces might use inference. It is a technology used to store complex structured data used by a computer system. The initial use of the term was in connection with expert systems, which were the first knowledge-based systems. The original use of the term knowledge base was to describe one of the two sub-systems of an expert system.
Cyc (pronounced ˈsaɪk ) is a long-term artificial intelligence project that aims to assemble a comprehensive ontology and knowledge base that spans the basic concepts and rules about how the world works. Hoping to capture common sense knowledge, Cyc focuses on implicit knowledge that other AI platforms may take for granted. This is contrasted with facts one might find somewhere on the internet or retrieve via a search engine or Wikipedia. Cyc enables semantic reasoners to perform human-like reasoning and be less "brittle" when confronted with novel situations.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
Philosophie de la nature : Physique et philosophie au XXe siècle.
Le cours se centre sur les grandes théories physiques du XXe siècle, à savoir les théories de la relativité d'Einstein et la physique
Explains exercise solutions on the semantic web using dictionaries and inference rules.
Explores distant supervision for linking text to knowledge bases using entity extraction and classifiers.
Explores popular ontologies and knowledge bases like WordNet, WikiData, Google Knowledge Graph, and Schema.org, as well as Linked Open Data sets.
As modern data pipelines continue to collect, produce, and store a variety of data formats, extracting and combining value from traditional and context-rich sources such as strings, text, video, audio, and logs becomes a manual process where such formats a ...
Investigating the intangible nature of a cultural domain can take multiple forms, addressing for example the aesthetic, epistemic and social dimensions of its phenomenology. The context of Southern Chinese martial arts is of particular significance as it c ...
2023
, ,
Structured and grounded representation of text is typically formalized by closed information extraction, the problem of extracting an exhaustive set of (subject, relation, object) triplets that are consistent with a predefined set of entities and relations ...