In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge. In inertial coordinates in special relativity, four-acceleration is defined as the rate of change in four-velocity with respect to the particle's proper time along its worldline. We can say: where with the three-acceleration and the three-velocity, and and is the Lorentz factor for the speed (with ). A dot above a variable indicates a derivative with respect to the coordinate time in a given reference frame, not the proper time (in other terms, ). In an instantaneously co-moving inertial reference frame , and , i.e. in such a reference frame Geometrically, four-acceleration is a curvature vector of a worldline. Therefore, the magnitude of the four-acceleration (which is an invariant scalar) is equal to the proper acceleration that a moving particle "feels" moving along a worldline. A worldline having constant four-acceleration is a Minkowski-circle i.e. hyperbola (see hyperbolic motion) The scalar product of a particle's four-velocity and its four-acceleration is always 0. Even at relativistic speeds four-acceleration is related to the four-force: where m is the invariant mass of a particle. When the four-force is zero, only gravitation affects the trajectory of a particle, and the four-vector equivalent of Newton's second law above reduces to the geodesic equation. The four-acceleration of a particle executing geodesic motion is zero. This corresponds to gravity not being a force. Four-acceleration is different from what we understand by acceleration as defined in Newtonian physics, where gravity is treated as a force.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.