Hopf linkIn mathematical knot theory, the Hopf link is the simplest nontrivial link with more than one component. It consists of two circles linked together exactly once, and is named after Heinz Hopf. A concrete model consists of two unit circles in perpendicular planes, each passing through the center of the other. This model minimizes the ropelength of the link and until 2002 the Hopf link was the only link whose ropelength was known. The convex hull of these two circles forms a shape called an oloid.
Brunnian linkIn knot theory, a branch of topology, a Brunnian link is a nontrivial link that becomes a set of trivial unlinked circles if any one component is removed. In other words, cutting any loop frees all the other loops (so that no two loops can be directly linked). The name Brunnian is after Hermann Brunn. Brunn's 1892 article Über Verkettung included examples of such links. The best-known and simplest possible Brunnian link is the Borromean rings, a link of three unknots.
UnlinkIn the mathematical field of knot theory, an unlink is a link that is equivalent (under ambient isotopy) to finitely many disjoint circles in the plane. An n-component link L ⊂ S3 is an unlink if and only if there exists n disjointly embedded discs Di ⊂ S3 such that L = ∪i∂Di. A link with one component is an unlink if and only if it is the unknot. The link group of an n-component unlink is the free group on n generators, and is used in classifying Brunnian links. The Hopf link is a simple example of a link with two components that is not an unlink.