A location test is a statistical hypothesis test that compares the location parameter of a statistical population to a given constant, or that compares the location parameters of two statistical populations to each other. Most commonly, the location parameter (or parameters) of interest are expected values, but location tests based on medians or other measures of location are also used.
The one-sample location test compares the location parameter of one sample to a given constant. An example of a one-sample location test would be a comparison of the location parameter for the blood pressure distribution of a population to a given reference value. In a one-sided test, it is stated before the analysis is carried out that it is only of interest if the location parameter is either larger than, or smaller than the given constant, whereas in a two-sided test, a difference in either direction is of interest.
The two-sample location test compares the location parameters of two samples to each other. A common situation is where the two populations correspond to research subjects who have been treated with two different treatments (one of them possibly being a control or placebo). In this case, the goal is to assess whether one of the treatments typically yields a better response than the other. In a one-sided test, it is stated before the analysis is carried out that it is only of interest if a particular treatment yields the better responses, whereas in a two-sided test, it is of interest whether either of the treatments is superior to the other.
The following tables provide guidance to the selection of the proper parametric or non-parametric statistical tests for a given data set.
The following table summarizes some common parametric and nonparametric tests for the location parameters of one or more samples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers regression analysis for disentangling data using linear regression modeling, transformations, interpretations of coefficients, and generalized linear models.
Delves into regression analysis, emphasizing linear predictors' role in approximating outcomes and discussing generalized linear models and causal inference techniques.
The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. The one-sample version serves a purpose similar to that of the one-sample Student's t-test. For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples").
The sign test is a statistical method to test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as post-treatment). The paired observations may be designated x and y.
In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test taker may score above or below a specific range of scores. This method is used for null hypothesis testing and if the estimated value exists in the critical areas, the alternative hypothesis is accepted over the null hypothesis.
For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under a wide range of operational and transient conditions. Such studies ...
EPFL2007
Testing for equality of two high-dimensional distributions is a challenging problem, and this becomes even more challenging when the sample size is small. Over the last few decades, several graph-based two-sample tests have been proposed in the literature, ...
In this paper, we address the issues of analyzing and classifying JPEG 2000 code-streams. An original representation, called integral volume, is first proposed to compute local image features progressively from the compressed code-stream, on any spatial im ...
Institute of Electrical and Electronics Engineers2011