Hyperoxia occurs when cells, tissues and organs are exposed to an excess supply of oxygen (O2) or higher than normal partial pressure of oxygen. In medicine, it refers to excessive oxygen in the lungs or other body tissues, and results from raised alveolar oxygen partial pressure - that is, alveolar oxygen partial pressure greater than that due to breathing air at normal (sea level) atmospheric pressure. This can be caused by breathing air, at pressure above normal, or by breathing other gas mixtures with a high oxygen fraction, high ambient pressure or both. The body is tolerant of some deviation from normal inspired oxygen partial pressure, but a sufficiently elevated level of hyperoxia can lead to oxygen toxicity over time, with the mechanism related to the partial pressure, and the severity related to the dose. Hyperoxia is the opposite of hypoxia; hyperoxia refers to a state in which oxygen supply to the tissues is excessive, and hypoxia refers to a state in which oxygen supply is insufficient. Supplementary oxygen administration is widely used in emergency and intensive care medicine and can be life-saving in critical conditions, but too much can be harmful and affects a variety of pathophysiological processes. Reactive oxygen species are known problematic by-products of hyperoxia which have an important role in cell signaling pathways. There are a wide range of effects, but when the homeostatic balance is disturbed, reactive oxygen species tend to cause a cycle of tissue injury, with inflammation, cell damage, and cell death. In the environment, hyperoxia refers to an abnormally high oxygen concentration in a body of water or other habitat. Associated with hyperoxia is an increased level of reactive oxygen species (ROS), which are chemically reactive molecules containing oxygen. These oxygen containing molecules can damage lipids, proteins, and nucleic acids, and react with surrounding biological tissues.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (13)
Rebreather diving
Rebreather diving is underwater diving using diving rebreathers, a class of underwater breathing apparatus which recirculate the breathing gas exhaled by the diver after replacing the oxygen used and removing the carbon dioxide metabolic product. Rebreather diving is practiced by recreational, military and scientific divers in applications where it has advantages over open circuit scuba, and surface supply of breathing gas is impracticable. The main advantages of rebreather diving are extended gas endurance, low noise levels, and lack of bubbles.
Breathing
Breathing (or ventilation) is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen. All aerobic creatures need oxygen for cellular respiration, which extracts energy from the reaction of oxygen with molecules derived from food and produces carbon dioxide as a waste product. Breathing, or "external respiration", brings air into the lungs where gas exchange takes place in the alveoli through diffusion.
Underwater diving
Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving, an ambiguous term with several possible meanings, depending on context. Immersion in water and exposure to high ambient pressure have physiological effects that limit the depths and duration possible in ambient pressure diving.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.