Homogeneous coordinate ringIn algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN] is the polynomial ring in N + 1 variables Xi. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space).
Blowing upIn mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with all the directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion. Blowups are the most fundamental transformation in birational geometry, because every birational morphism between projective varieties is a blowup.
Projective spaceIn mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs.