Indeterminate (variable)In mathematics, particularly in formal algebra, an indeterminate is a symbol that is treated as a variable, but does not stand for anything else except itself. It may be used as a placeholder in objects such as polynomials and formal power series. In particular: It does not designate a constant or a parameter of the problem. It is not an unknown that could be solved for. It is not a variable designating a function argument, or a variable being summed or integrated over. It is not any type of bound variable.
Homogeneous polynomialIn mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function. An algebraic form, or simply form, is a function defined by a homogeneous polynomial.
Multiplicity (mathematics)In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, double roots counted twice). Hence the expression, "counted with multiplicity". If multiplicity is ignored, this may be emphasized by counting the number of distinct elements, as in "the number of distinct roots".
Cubic functionIn mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficients a, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.
UnivariateIn mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials.
Constant (mathematics)In mathematics, the word constant conveys multiple meanings. As an adjective, it refers to non-variance (i.e. unchanging with respect to some other value); as a noun, it has two different meanings: A fixed and well-defined number or other non-changing mathematical object. The terms mathematical constant or physical constant are sometimes used to distinguish this meaning. A function whose value remains unchanged (i.e., a constant function). Such a constant is commonly represented by a variable which does not depend on the main variable(s) in question.
Vieta's formulasIn mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta"). Any general polynomial of degree n (with the coefficients being real or complex numbers and an ≠ 0) has n (not necessarily distinct) complex roots r1, r2, ..., rn by the fundamental theorem of algebra. Vieta's formulas relate the polynomial's coefficients to signed sums of products of the roots r1, r2, .
Restriction (mathematics)In mathematics, the restriction of a function is a new function, denoted or obtained by choosing a smaller domain for the original function The function is then said to extend Let be a function from a set to a set If a set is a subset of then the restriction of to is the function given by for Informally, the restriction of to is the same function as but is only defined on .
Algebraic elementIn mathematics, if L is a field extension of K, then an element a of L is called an algebraic element over K, or just algebraic over K, if there exists some non-zero polynomial g(x) with coefficients in K such that g(a) = 0. Elements of L which are not algebraic over K are called transcendental over K. These notions generalize the algebraic numbers and the transcendental numbers (where the field extension is C/Q, C being the field of complex numbers and Q being the field of rational numbers).
System of polynomial equationsA system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers.