A seismometer is an instrument that responds to ground noises and shaking such as caused by quakes, volcanic eruptions, and explosions. They are usually combined with a timing device and a recording device to form a seismograph. The output of such a device—formerly recorded on paper (see picture) or film, now recorded and processed digitally—is a seismogram. Such data is used to locate and characterize earthquakes, and to study the Earth's internal structure.
A simple seismometer, sensitive to up-down motions of the Earth, is like a weight hanging from a spring, both suspended from a frame that moves along with any motion detected. The relative motion between the weight (called the mass) and the frame provides a measurement of the vertical ground motion. A rotating drum is attached to the frame and a pen is attached to the weight, thus recording any ground motion in a seismogram.
Any movement from the ground moves the frame. The mass tends not to move because of its inertia, and by measuring the movement between the frame and the mass, the motion of the ground can be determined.
Early seismometers used optical levers or mechanical linkages to amplify the small motions involved, recording on soot-covered paper or photographic paper. Modern instruments use electronics. In some systems, the mass is held nearly motionless relative to the frame by an electronic negative feedback loop. The motion of the mass relative to the frame is measured, and the feedback loop applies a magnetic or electrostatic force to keep the mass nearly motionless. The voltage needed to produce this force is the output of the seismometer, which is recorded digitally.
In other systems the weight is allowed to move, and its motion produces an electrical charge in a coil attached to the mass which voltage moves through the magnetic field of a magnet attached to the frame. This design is often used in a geophone, which is used in exploration for oil and gas.
Seismic observatories usually have instruments measuring three axes: north-south (y-axis), east-west (x-axis), and vertical (z-axis).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
The epicenter (ˈɛpɪˌsɛntər), epicentre, or epicentrum in seismology is the point on the Earth's surface directly above a hypocenter or focus, the point where an earthquake or an underground explosion originates. Before the instrumental period of earthquake observation, the epicenter was thought to be the location where the greatest damage occurred, but the subsurface fault rupture may be long and spread surface damage across the entire rupture zone. As an example, in the magnitude 7.
The National Aeronautics and Space Administration (NASA ˈnæsə) is an independent agency of the U.S. federal government responsible for the civil space program, aeronautics research, and space research. Established in 1958, NASA succeeded the National Advisory Committee for Aeronautics (NACA) to give the U.S. space development effort a distinctly civilian orientation, emphasizing peaceful applications in space science.
NOTOC In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves. S waves are transverse waves, meaning that the direction of particle movement of a S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress.
Explores earthquake effects, seismic hazards, building damage, and seismic design principles, emphasizing the importance of deformation capacity in structures.
We investigate the quasi-static growth of a fluid-driven frictional shear crack that propagates in mixed mode (II+III) on a planar fault interface that separates two identical half-spaces of a three-dimensional solid. The fault interface is characterized b ...
Free-standing masonry column is a recurrent typology of built cultural heritage. Usually raised without seismic design, columns are subject to intense rocking and overturning under strong ground motions. In this paper, a strategy to assess their seismic vu ...
This paper summarizes a series of analytical studies that were conducted in connection with an improved approach for the design of acceleration-sensitive nonstructural elements. In the new approach, bracing to secure nonstructural elements to the structure ...