Q-Pochhammer symbolIn mathematical area of combinatorics, the q-Pochhammer symbol, also called the q-shifted factorial, is the product with It is a q-analog of the Pochhammer symbol , in the sense that The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series.
Pentagonal number theoremIn mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that In other words, The exponents 1, 2, 5, 7, 12, ... on the right hand side are given by the formula gk = k(3k − 1)/2 for k = 1, −1, 2, −2, 3, ... and are called (generalized) pentagonal numbers . (The constant term 1 corresponds to .) This holds as an identity of convergent power series for , and also as an identity of formal power series.
Partition function (number theory)In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n. For instance, p(4) = 5 because the integer 4 has the five partitions 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. No closed-form expression for the partition function is known, but it has both asymptotic expansions that accurately approximate it and recurrence relations by which it can be calculated exactly. It grows as an exponential function of the square root of its argument.
Dedekind eta functionIn mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory. For any complex number τ with Im(τ) > 0, let q = e2πiτ; then the eta function is defined by, Raising the eta equation to the 24th power and multiplying by (2π)12 gives where Δ is the modular discriminant.