A contractile vacuole (CV) is a sub-cellular structure (organelle) involved in osmoregulation. It is found predominantly in protists and in unicellular algae. It was previously known as pulsatile or pulsating vacuole.
The contractile vacuole is a specialized type of vacuole that regulates the quantity of water inside a cell. In freshwater environments, the concentration of solutes is hypotonic, lower outside than inside the cell. Under these conditions, osmosis causes water to accumulate in the cell from the external environment. The contractile vacuole acts as part of a protective mechanism that prevents the cell from absorbing too much water and possibly lysing (rupturing) through excessive internal pressure.
The contractile vacuole, as its name suggests, expels water out of the cell by contracting. The growth (water gathering) and contraction (water expulsion) of the contractile vacuole are periodical. One cycle takes several seconds, depending on the species and the osmolarity of the environment. The stage in which water flows into the CV is called diastole. The contraction of the contractile vacuole and the expulsion of water out of the cell is called systole.
Water always flows first from outside the cell into the cytoplasm, and is only then moved from the cytoplasm into the contractile vacuole for expulsion. Species that possess a contractile vacuole typically always use the organelle, even at very hypertonic (high concentration of solutes) environments, since the cell tends to adjust its cytoplasm to become even more hyperosmotic than the environment. The amount of water expelled from the cell and the rate of contraction are related to the osmolarity of the environment. In hyperosmotic environments, less water will be expelled and the contraction cycle will be longer.
The best-understood contractile vacuoles belong to the protists Paramecium, Amoeba, Dictyostelium and Trypanosoma, and to a lesser extent the green alga Chlamydomonas.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
automatic taxobox | image = Amoeba proteus with many pseudopodia.jpg | image_caption = Amoeba proteus | taxon = Amoeba | authority = Bory de Saint-Vincent, 1822Bory de Saint-Vincent, J.B.G.M. (1822-1831). Article "Amiba". In: 'Dictionnaire classique d'histoire naturelle par Messieurs Audouin, Isid. Bourdon, Ad. Brongniart, De Candolle, Daudebard de Férusac, A. Desmoulins, Drapiez, Edwards, Flourens, Geoffroy de Saint-Hilaire, A. De Jussieu, Kunth, G. de Lafosse, Lamouroux, Latreille, Lucas fils, Presle-Duplessis, C.
The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group (although the peculiar Suctoria only have them for part of their life cycle) and are variously used in swimming, crawling, attachment, feeding, and sensation.
In chemical biology, tonicity is a measure of the effective osmotic pressure gradient; the water potential of two solutions separated by a partially-permeable cell membrane. Tonicity depends on the relative concentration of selective membrane-impermeable solutes across a cell membrane which determine the direction and extent of osmotic flux. It is commonly used when describing the swelling-versus-shrinking response of cells immersed in an external solution.
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries ...
Protists are abundant and play key trophic functions in soil. Documenting how their trophic contributions vary across large environmental gradients is essential to understand and predict how biogeochemical cycles will be impacted by global changes. Here, u ...
Explores the Electron Transport Chain in mitochondria, focusing on proton pumps and Coenzyme Q.
Photosynthetic linear electron flow (LEF) produces ATP and NADPH, while cyclic electron flow (CEF) exclusively drives photophosphorylation to supply extra ATP. The fine-tuning of linear and cyclic electron transport levels allows photosynthetic organisms t ...
Proceedings of the National Academy of Sciences2018