Matching is a statistical technique which is used to evaluate the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned). The goal of matching is to reduce bias for the estimated treatment effect in an observational-data study, by finding, for every treated unit, one (or more) non-treated unit(s) with similar observable characteristics against which the covariates are balanced out. By matching treated units to similar non-treated units, matching enables a comparison of outcomes among treated and non-treated units to estimate the effect of the treatment reducing bias due to confounding. Propensity score matching, an early matching technique, was developed as part of the Rubin causal model, but has been shown to increase model dependence, bias, inefficiency, and power and is no longer recommended compared to other matching methods. A simple, easy-to-understand, and statistically powerful method of matching known as Coarsened Exact Matching or CEM.
Matching has been promoted by Donald Rubin. It was prominently criticized in economics by LaLonde (1986), who compared estimates of treatment effects from an experiment to comparable estimates produced with matching methods and showed that matching methods are biased. Dehejia and Wahba (1999) reevaluated LaLonde's critique and showed that matching is a good solution. Similar critiques have been raised in political science and sociology journals.
When the outcome of interest is binary, the most general tool for the analysis of matched data is conditional logistic regression as it handles strata of arbitrary size and continuous or binary treatments (predictors) and can control for covariates. In particular cases, simpler tests like paired difference test, McNemar test and Cochran-Mantel-Haenszel test are available.
When the outcome of interest is continuous, estimation of the average treatment effect is performed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
The class will provide information about what STI support tools exist and why, will explain the rationales and best practices for STI policy intervention and will provide with a sound understanding of
The average treatment effect (ATE) is a measure used to compare treatments (or interventions) in randomized experiments, evaluation of policy interventions, and medical trials. The ATE measures the difference in mean (average) outcomes between units assigned to the treatment and units assigned to the control. In a randomized trial (i.e., an experimental study), the average treatment effect can be estimated from a sample using a comparison in mean outcomes for treated and untreated units.
In the statistical analysis of observational data, propensity score matching (PSM) is a statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment. PSM attempts to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units that received the treatment versus those that did not. Paul R.
Difference in differences (DID or DD) is a statistical technique used in econometrics and quantitative research in the social sciences that attempts to mimic an experimental research design using observational study data, by studying the differential effect of a treatment on a 'treatment group' versus a 'control group' in a natural experiment. It calculates the effect of a treatment (i.e., an explanatory variable or an independent variable) on an outcome (i.e.
Technology mapping transforms a technology-independent representation into a technology-dependent one given a library of cells. This process is performed by means of local replacements that are extracted by matching sections of the subject graph to library ...
The green bond market's rapid growth has alerted issuers and investors to this sustainable area of investment. This study ascertains whether green bonds are priced lower than conventional bonds-whether a negative green bond premium exists in both Chinese a ...
The primary hypothesis of this study was that the survival rate over 10 years of total knee arthroplasties (TKAs) implanted with a navigation system was superior to that of TKAs implanted with a conventional technique. The secondary hypothesis was that the ...