Concept

Oyster wave energy converter

Summary
The Oyster is a hydro-electric wave energy device that uses the motion of ocean waves to generate electricity. It is made up of a Power Connector Frame (PCF), which is bolted to the seabed, and a Power Capture Unit (PCU). The PCU is a hinged buoyant flap that moves back and forth with movement of the waves. The movement of the flap drives two hydraulic pistons that feed high-pressured water to an onshore hydro-electric turbine, which drives a generator to make electricity. Oyster was stationed at the European Marine Energy Centre (EMEC) at its Billia Croo site in Orkney, Scotland until the company ceased trading in 2015. Aquamarine Power installed Oyster at the EMEC in August 2009. On 20 November 2009, Oyster was officially launched and connected to the National Grid (UK) by the First Minister of Scotland, Alex Salmond. Development work was started to build a more efficient and powerful second-generation device, Oyster 2. Oyster was developed by Edinburgh-based Aquamarine Power, a company that focuses on wave energy. The concept originated from research at Queen's University, Belfast, led by professor Trevor Whittaker, Head of the Wave Power Research Centre at Queen's. Aquamarine Power also teamed up with Renewable Technology Ventures Ltd (STVL), a subsidiary of Scottish and Southern Energy (SEE), to fund the Oyster project. Aquamarine Power was able to secure a £6.3m investment from Scottish Enterprise. In addition, Scottish Enterprises awarded Aquamarine Power a £3.15 million grant from the Wave and Tidal Energy: Research, Development and Demonstration Support fund (WATERS). Aquamarine Power also received £1.5m from Sigma Capital Group plc. Altogether, Aquamarine Power was able to raise £11 million to stage this project. In June 2009, Aquamarine Power signed a £2.5 million contract with Fugro Seacore to install the Oyster device at the European Marine Energy Centre test site at Billia Croo. Oyster was installed 400 metres offshore, west of the Orkney mainland, in 12 metre-deep water.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.