Concept

Einstein–de Sitter universe

Summary
The Einstein–de Sitter universe is a model of the universe proposed by Albert Einstein and Willem de Sitter in 1932. On first learning of Edwin Hubble's discovery of a linear relation between the redshift of the galaxies and their distance, Einstein set the cosmological constant to zero in the Friedmann equations, resulting in a model of the expanding universe known as the Friedmann–Einstein universe. In 1932, Einstein and De Sitter proposed an even simpler cosmic model by assuming a vanishing spatial curvature as well as a vanishing cosmological constant. In modern parlance, the Einstein–de Sitter universe can be described as a cosmological model for a flat matter-only Friedmann–Lemaître–Robertson–Walker metric (FLRW) universe. In the model, Einstein and de Sitter derived a simple relation between the average density of matter in the universe and its expansion according to H02 = кρ/3, where H0 is the Hubble constant, ρ is the average density of matter and к is the Einstein gravitational constant. The size of the Einstein–de Sitter universe evolves with time as , making its current age 2/3 times the Hubble time. The Einstein–de Sitter universe became a standard model of the universe for many years because of its simplicity and because of a lack of empirical evidence for either spatial curvature or a cosmological constant. It also represented an important theoretical case of a universe of critical matter density poised just at the limit of eventually contracting. However, Einstein's later reviews of cosmology make it clear that he saw the model as only one of several possibilities for the expanding universe. The Einstein–de Sitter universe was particularly popular in the 1980s, after the theory of cosmic inflation predicted that the curvature of the universe should be very close to zero. This case with zero cosmological constant implies the Einstein–de Sitter model, and the theory of cold dark matter was developed, initially with a cosmic matter budget around 95% cold dark matter and 5% baryons.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.