Concept

Frucht graph

In the mathematical field of graph theory, the Frucht graph is a cubic graph with 12 vertices, 18 edges, and no nontrivial symmetries. It was first described by Robert Frucht in 1939. The Frucht graph is a pancyclic, Halin graph with chromatic number 3, chromatic index 3, radius 3, and diameter 4. Like every Halin graph, the Frucht graph is polyhedral (planar and 3-vertex-connected) and Hamiltonian, with girth 3. Its independence number is 5. The Frucht graph can be constructed from the LCF notation: [−5,−2,−4,2,5,−2,2,5,−2,−5,4,2]. The Frucht graph is one of the five smallest cubic graphs possessing only a single graph automorphism, the identity (that is, every vertex can be distinguished topologically from every other vertex). Such graphs are called asymmetric (or identity) graphs. Frucht's theorem states that any group can be realized as the group of symmetries of a graph, and a strengthening of this theorem also due to Frucht states that any group can be realized as the symmetries of a 3-regular graph; the Frucht graph provides an example of this realization for the trivial group. The characteristic polynomial of the Frucht graph is . File:Frucht_graph_3COL.svg|The [[chromatic number]] of the Frucht graph is 3. File:Frucht Lombardi.svg| The Frucht graph is [[Hamiltonian graph|Hamiltonian]].

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.