Related publications (5)

Every Elementary Higher Topos Has A Natural Number Object

Nima Rasekh

We prove that every elementary (infinity, 1)-topos has a natural number object. We achieve this by defining the loop space of the circle and showing that we can construct a natural number object out of it. Part of the proof involves showing that various de ...
2021

Uniform s-Cross-Intersecting Families

Andrei Kupavskii

In this paper we study a question related to the classical Erdos-Ko-Rado theorem, which states that any family of k-element subsets of the set [n] = {1,..., n} in which any two sets intersect has cardinality at most ((n-1)(k-1)). We say that two non-empty ...
Cambridge Univ Press2017

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.