Related publications (1,000)

ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference

Nikita Durasov, Minh Hieu Lê, Nik Joel Dorndorf

Whereas the ability of deep networks to produce useful predictions on many kinds of data has been amply demonstrated, estimating the reliability of these predictions remains challenging. Sampling approaches such as MC-Dropout and Deep Ensembles have emerge ...
2024

An immersive virtual reality tool for assessing left and right unilateral spatial neglect

Olaf Blanke, Andrea Serino, Roberta Ronchi

The reported rate of the occurrence of unilateral spatial neglect (USN) is highly variable likely due to the lack of validity and low sensitivity of classical tools used to assess it. Virtual reality (VR) assessments try to overcome these limitations by pr ...
Hoboken2024

Automated all-functionals infrared and Raman spectra

Nicola Marzari, Lorenzo Bastonero

Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
Nature Portfolio2024

Sense in Motion with Belief Clustering: Efficient Gas Source Localization with Mobile Robots

Alcherio Martinoli, Wanting Jin

Given the patchy nature of gas plumes and the slow response of conventional gas sensors, the use of mobile robots for Gas Source Localization (GSL) tasks presents significant challenges. These aspects increase the difficulties in obtaining gas measurement ...
2024

Augmented Memory: Sample-Efficient Generative Molecular Design with Reinforcement Learning

Philippe Schwaller, Jeff Guo

Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
Amer Chemical Soc2024

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.