Concept

Spectral triple

Summary
In noncommutative geometry and related branches of mathematics and mathematical physics, a spectral triple is a set of data which encodes a geometric phenomenon in an analytic way. The definition typically involves a Hilbert space, an algebra of operators on it and an unbounded self-adjoint operator, endowed with supplemental structures. It was conceived by Alain Connes who was motivated by the Atiyah-Singer index theorem and sought its extension to 'noncommutative' spaces. Some authors refer to this notion as unbounded K-cycles or as unbounded Fredholm modules. A motivating example of spectral triple is given by the algebra of smooth functions on a compact spin manifold, acting on the Hilbert space of L2-spinors, accompanied by the Dirac operator associated to the spin structure. From the knowledge of these objects one is able to recover the original manifold as a metric space: the manifold as a topological space is recovered as the spectrum of the algebra, while the (absolute value of) Dirac operator retains the metric. On the other hand, the phase part of the Dirac operator, in conjunction with the algebra of functions, gives a K-cycle which encodes index-theoretic information. The local index formula expresses the pairing of the K-group of the manifold with this K-cycle in two ways: the 'analytic/global' side involves the usual trace on the Hilbert space and commutators of functions with the phase operator (which corresponds to the 'index' part of the index theorem), while the 'geometric/local' side involves the Dixmier trace and commutators with the Dirac operator (which corresponds to the 'characteristic class integration' part of the index theorem). Extensions of the index theorem can be considered in cases, typically when one has an action of a group on the manifold, or when the manifold is endowed with a foliation structure, among others.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.