Summary
In statistics and psychometrics, reliability is the overall consistency of a measure. A measure is said to have a high reliability if it produces similar results under consistent conditions:"It is the characteristic of a set of test scores that relates to the amount of random error from the measurement process that might be embedded in the scores. Scores that are highly reliable are precise, reproducible, and consistent from one testing occasion to another. That is, if the testing process were repeated with a group of test takers, essentially the same results would be obtained. Various kinds of reliability coefficients, with values ranging between 0.00 (much error) and 1.00 (no error), are usually used to indicate the amount of error in the scores." For example, measurements of people's height and weight are often extremely reliable. There are several general classes of reliability estimates: Inter-rater reliability assesses the degree of agreement between two or more raters in their appraisals. For example, a person gets a stomach ache and different doctors all give the same diagnosis. Test-retest reliability assesses the degree to which test scores are consistent from one test administration to the next. Measurements are gathered from a single rater who uses the same methods or instruments and the same testing conditions. This includes intra-rater reliability. Inter-method reliability assesses the degree to which test scores are consistent when there is a variation in the methods or instruments used. This allows inter-rater reliability to be ruled out. When dealing with forms, it may be termed parallel-forms reliability. Internal consistency reliability, assesses the consistency of results across items within a test. Validity (statistics)#Reliability Reliability does not imply validity. That is, a reliable measure that is measuring something consistently is not necessarily measuring what you want to be measured. For example, while there are many reliable tests of specific abilities, not all of them would be valid for predicting, say, job performance.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood