In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively,
schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
The resulting of algebraic spaces extends the category of schemes and allows one to carry out several natural constructions that are used in the construction of moduli spaces but are not always possible in the smaller category of schemes, such as taking the quotient of a free action by a finite group (cf. the Keel–Mori theorem).
There are two common ways to define algebraic spaces: they can be defined as either quotients of schemes by etale equivalence relations, or as sheaves on a big etale site that are locally isomorphic to schemes. These two definitions are essentially equivalent.
An algebraic space X comprises a scheme U and a closed subscheme R ⊂ U × U satisfying the following two conditions:
R is an equivalence relation as a subset of U × U
The projections pi: R → U onto each factor are étale maps.
Some authors, such as Knutson, add an extra condition that an algebraic space has to be quasi-separated, meaning that the diagonal map is quasi-compact.
One can always assume that R and U are affine schemes. Doing so means that the theory of algebraic spaces is not dependent on the full theory of schemes, and can indeed be used as a (more general) replacement of that theory.
If R is the trivial equivalence relation over each connected component of U (i.e. for all x, y belonging to the same connected component of U, we have xRy if and only if x=y), then the algebraic space will be a scheme in the usual sense.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is a course about group schemes, with an emphasis on structural theorems for algebraic groups (e.g. Barsotti--Chevalley's theorem). All the basics will be covered towards the proof of such theore
Related lectures (4)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
In algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...
In this thesis we consider the problem of estimating the correlation of Hecke eigenvalues of GL2 automorphic forms with a class of functions of algebraic origin defined over finite fields called trace functions. The class of trace functions is vast and inc ...
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...