Concept

Image-based meshing

Summary
Image-based meshing is the automated process of creating computer models for computational fluid dynamics (CFD) and finite element analysis (FEA) from 3D image data (such as magnetic resonance imaging (MRI), computed tomography (CT) or microtomography). Although a wide range of mesh generation techniques are currently available, these were usually developed to generate models from computer-aided design (CAD), and therefore have difficulties meshing from 3D imaging data. Meshing from 3D imaging data presents a number of challenges but also unique opportunities for presenting a more realistic and accurate geometrical description of the computational domain. There are generally two ways of meshing from 3D imaging data: The majority of approaches used to date still follow the traditional CAD route by using an intermediary step of surface reconstruction which is then followed by a traditional CAD-based meshing algorithm. CAD-based approaches use the scan data to define the surface of the domain and then create elements within this defined boundary. Although reasonably robust algorithms are now available, these techniques are often time consuming, and virtually intractable for the complex topologies typical of image data. They also do not easily allow for more than one domain to be meshed, as multiple surfaces are often non-conforming with gaps or overlaps at interfaces where one or more structures meet. This approach is the more direct way as it combines the geometric detection and mesh creation stages in one process which offers a more robust and accurate result than meshing from surface data. Voxel conversion technique providing meshes with brick elements and with tetrahedral elements have been proposed. Another approach generates 3D tetrahedral or tetrahedral elements throughout the volume of the domain, thus creating the mesh directly with conforming multipart surfaces. The steps involved in the generation of models based on 3D imaging data are: An extensive range of tools can be used to generate highly accurate models based on data from 3D imaging modalities, e.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.