Concept

Phenetics

Summary
In biology, phenetics (phainein – to appear) fᵻˈnɛtɪks, also known as taximetrics, is an attempt to classify organisms based on overall similarity, usually in morphology or other observable traits, regardless of their phylogeny or evolutionary relation. It is closely related to numerical taxonomy which is concerned with the use of numerical methods for taxonomic classification. Many people contributed to the development of phenetics, but the most influential were Peter Sneath and Robert R. Sokal. Their books are still primary references for this sub-discipline, although now out of print. Phenetics has largely been superseded by cladistics for research into evolutionary relationships among species. However, certain phenetic methods, such as neighbor-joining, have found their way into phylogenetics, as a reasonable approximation of phylogeny when more advanced methods (such as Bayesian inference) are too computationally expensive. Phenetic techniques include various forms of clustering and ordination. These are sophisticated ways of reducing the variation displayed by organisms to a manageable level. In practice this means measuring dozens of variables, and then presenting them as two- or three-dimensional graphs. Much of the technical challenge in phenetics revolves around balancing the loss of information in such a reduction against the ease of interpreting the resulting graphs. The method can be traced back to 1763 and Michel Adanson (in his Familles des plantes) because of two shared basic principles – overall similarity and equal weighting – and modern pheneticists are sometimes called neo-Adansonians. Phenetic analyses are unrooted, that is, they do not distinguish between plesiomorphies, traits that are inherited from an ancestor, and apomorphies, traits that evolved anew in one or several lineages. A common problem with phenetic analysis is that basal evolutionary grades, which retain many plesiomorphies compared to more advanced lineages, appear to be monophyletic.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood