Summary
The proteome is the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time. It is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions. Proteomics is the study of the proteome. While proteome generally refers to the proteome of an organism, multicellular organisms may have very different proteomes in different cells, hence it is important to distinguish proteomes in cells and organisms. A cellular proteome is the collection of proteins found in a particular cell type under a particular set of environmental conditions such as exposure to hormone stimulation. It can also be useful to consider an organism's complete proteome, which can be conceptualized as the complete set of proteins from all of the various cellular proteomes. This is very roughly the protein equivalent of the genome. The term proteome has also been used to refer to the collection of proteins in certain sub-cellular systems, such as organelles. For instance, the mitochondrial proteome may consist of more than 3000 distinct proteins. The proteins in a virus can be called a viral proteome. Usually viral proteomes are predicted from the viral genome but some attempts have been made to determine all the proteins expressed from a virus genome, i.e. the viral proteome. More often, however, virus proteomics analyzes the changes of host proteins upon virus infection, so that in effect two proteomes (of virus and its host) are studied. The proteome can be used in order to comparatively analyze different cancer cell lines. Proteomic studies have been used in order to identify the likelihood of metastasis in bladder cancer cell lines KK47 and YTS1 and were found to have 36 unregulated and 74 down regulated proteins. The differences in protein expression can help identify novel cancer signaling mechanisms. Biomarkers of cancer have been found by mass spectrometry based proteomic analyses.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood