Concept

Full-spectrum light

Summary
Full-spectrum light is light that covers the electromagnetic spectrum from infrared to near-ultraviolet, or all wavelengths that are useful to plant or animal life; in particular, sunlight is considered full spectrum, even though the solar spectral distribution reaching Earth changes with time of day, latitude, and atmospheric conditions. "Full-spectrum" is not a technical term when applied to an electrical light bulb. Rather, it implies that the product emulates some important quality of natural light. Products marketed as "full-spectrum" may produce light throughout the entire visible spectrum, but without producing an even spectral distribution. Some may not differ substantially from lights not marketed as "full-spectrum". Color temperature and Color Rendering Index (CRI) are the standards for measuring light. There is no technical definition of "full-spectrum" so it cannot be measured. To compare "full-spectrum" sources requires direct comparison of spectral distribution. The emission spectrum of a light source varies depending on the light generating mechanism. Thermal sources such as incandescent bulbs produce electromagnetic radiation over a broad and continuous range of wavelengths, including infrared and ultraviolet. A black body radiator is the idealized version of a thermal source. As the temperature of a black body radiator increases, the shape of its spectral distribution changes with more energy emitted at shorter (bluer) wavelengths. Sources that rely on fluorescence have a different emission spectrum shape than do thermal sources. Some wavelengths will be produced with greater amplitude than others. Fluorescent sources used for lighting, such as fluorescent lamps, white light emitting diodes, and metal halide lamps are intended to produce light at all wavelengths, but the distribution is different from thermal sources and so colors will appear different under these forms of lighting than under daylight; some colors may match under one light source that don't appear the same under another, a phenomenon called metamerism.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.