Concept# Potential flow around a circular cylinder

Summary

In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.
Mathematical solution
A cylinder (or disk) of radius R is placed in a two-dimensional, incompressible, inviscid flow. The goal is to find the steady velocity vector V and pressure p in a plane, subject to the condition that far from the cylinder the velocity vector (relative to unit vectors i and j) is:
:\mathbf{V}=U\mathbf{i}+0\mathbf{j} ,,
where U is a constant, and at the boundary of the cylinder
:\mathbf{V}\cdot\mathbf{\hat n}=0 ,,
wher

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

No results

Related publications

Related units

No results

No results

Related courses

Related concepts

No results

No results

Related lectures

No results