**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Applied mathematics

Summary

Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models.
In the past, practical applications have motivated the development of mathematical theories, which then became the subject of study in pure mathematics where abstract concepts are studied for their own sake. The activity of applied mathematics is thus intimately connected with research in pure mathematics.
History
Historically, applied mathematics consisted principally of applied analysis, most notably differential equations; approximation theory (broadly construed, to include representations, asymptotic methods, variational m

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

Related units

No results

No results

Related publications (37)

Loading

Loading

Loading

Related concepts (84)

Mathematics

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These top

Engineering

Engineering is the practice of using natural science, mathematics, and the engineering design process to solve problems, increase efficiency and productivity, and improve systems. Modern engineering

Mathematical analysis

Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic function

Related courses (62)

EE-556: Mathematics of data: from theory to computation

This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees, describe scalable solution techniques and algorithms, and illustrate the trade-offs involved.

CH-250: Mathematical methods in chemistry

This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Fourier series and their use for solving ordinary and partial differential equations in chemistry & c.e.

MATH-470: Martingales in financial mathematics

The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mathematics. Moreover, the concepts of complete and incomplete markets are discussed.

The topic of this thesis is the study of several stochastic control problems motivated by sailing races. The goal is to minimize the travel time between two locations, by selecting the fastest route in face of randomly changing weather conditions, such as wind direction. When a sailboat is travelling upwind, the key is to decide when to tack. Since this maneuver slows down the yacht, it is natural to model this time lost by a "tacking penalty" which places the problem in the context of optimal stochastic control problems with switching costs. An objective of this work is to propose and to study mathematical models that capture some of the features of a sailing race, but which remain amenable to an explicit rigorous solution that can be proved to be optimal. We consider three different models in which the wind direction is described by a stochastic process. In the first model, we consider a wind that changes randomly only once. In the second model, the wind oscillates between two possible directions according to a continuous-time Markov chain. We exhibit a free boundary problem for the value function involving hyperbolic partial differential equations of Klein-Gordon type. The last model considers the wind direction as a Brownian motion. We prove the existence of a finite value function and exhibit a free boundary problem involving parabolic partial differential equations with non-constant coefficients. In these three models, the optimal solution consists of a partition of the state space into a region where it is optimal to tack immediately and a region where it is optimal to continue on the current tack. The boundaries between these regions are given by one or more "switching curves" and in the cases where we have been able to exhibit them, the optimality of the solution is established by a verification theorem based on the martingale method. We also solve two other control problems in which a player tries to minimize or maximize the exit time from an interval of a Brownian particle by controlling its drift and subject to a switching penalty. In each problem, the value function is written as the solution of a second order ordinary differential equations problem whose unknown boundaries are found by applying the principle of smooth fit. For both problems, we exhibit a candidate strategy as a function of the switching cost and we prove its optimality as well as its generic uniqueness.

The max-product algorithm, a local message-passing scheme that attempts to compute the most probable assignment (MAP) of a given probability distribution, has been successfully employed as a method of approximate inference for applications arising in coding theory, computer vision, and machine learning. However, the max-product algorithm is not guaranteed to converge, and if it does, it is not guaranteed to recover the MAP assignment. Alternative convergent message-passing schemes have been proposed to overcome these difficulties. This paper provides a systematic study of such message-passing algorithms that extends the known results by exhibiting new sufficient conditions for convergence to local and/or global optima, providing a combinatorial characterization of these optima based on graph covers, and describing a new convergent and correct message-passing algorithm whose derivation unifies many of the known convergent message-passing algorithms. While convergent and correct message-passing algorithms represent a step forward in the analysis of max-product style message-passing algorithms, the conditions needed to guarantee convergence to a global optimum can be too restrictive in both theory and practice. This limitation of convergent and correct message-passing schemes is characterized by graph covers and illustrated by example.

Related lectures (89)

Options are some of the most traded financial instruments and computing their price is a central task in financial mathematics and in practice. Consequently, the development of numerical algorithms for pricing options is an active field of research. In general, evaluating the price of a specific option relies on the properties of the stochastic model used for the underlying asset price. In this thesis we develop efficient and accurate numerical methods for option pricing in a specific class of models: polynomial models. They are a versatile tool for financial modeling and have useful properties that can be exploited for option pricing.
Significant challenges arise when developing option pricing techniques. For instance, the underlying model might have a high-dimensional parameter space. Furthermore, treating multi-asset options yields high-dimensional pricing problems. Therefore, the pricing method should be able to handle high dimensionality. Another important aspect is the efficiency of the algorithm: in real-world applications, option prices need to be delivered within short periods of time, making the algorithmic complexity a potential bottleneck. In this thesis, we address these challenges by developing option pricing techniques that are able to handle low and high-dimensional problems, and we propose complexity reduction techniques.
The thesis consists of four parts:
First, we present a methodology for European and American option pricing. The method uses the moments of the underlying price process to produce monotone sequences of lower and upper bounds of the option price. The bounds are obtained by solving a sequence of polynomial optimization problems. As the order of the moments increases, the bounds become sharper and eventually converge to the exact price under appropriate assumptions.
Second, we develop a fast algorithm for the incremental computation of nested block triangular matrix exponentials. This algorithm allows for an efficient incremental computation of the moment sequence of polynomial jump-diffusions. In other words, moments of order 0, 1, 2, 3... are computed sequentially until a dynamically evaluated criterion tells us to stop. The algorithm is based on the scaling and squaring technique and reduces the complexity of the pricing algorithms that require such an incremental moment computation.
Third, we develop a complexity reduction technique for high-dimensional option pricing. To this end, we first consider the option price as a function of model and payoff parameters. Then, the tensorized Chebyshev interpolation is used on the parameter space to increase the efficiency in computing option prices, while maintaining the required accuracy. The high dimensionality of the problem is treated by expressing the tensorized interpolation in the tensor train format and by deriving an efficient way, which is based on tensor completion, to approximate the interpolation coefficients.
Lastly, we propose a methodology for pricing single and multi-asset European options. The approach is a combination of Monte Carlo simulation and function approximation. We address the memory limitations that arise when treating very high-dimensional applications by combining the method with optimal sampling strategies and using a randomized algorithm to reduce the storage complexity of the approach.
The obtained numerical results show the effectiveness of the algorithms developed in this thesis.