Orbit insertion is the spaceflight operation of adjusting a spacecraft’s momentum, in particular to allow for entry into a stable orbit around a planet, moon, or other celestial body. This maneuver involves either deceleration from a speed in excess of the respective body’s escape velocity, or acceleration to it from a lower speed. The result may also be a transfer orbit. There is e.g., the term descent orbit insertion. Often this is called orbit injection. The first kind of orbit insertion is used when capturing into orbit around a celestial body other than Earth, owing to the excess speed of interplanetary transfer orbits relative to their destination orbits. This shedding of excess velocity is typically achieved via a rocket firing known as an orbit insertion burn. For such a maneuver, the spacecraft’s engine thrusts in its direction of travel for a specified duration to slow its velocity relative to the target body enough to enter into orbit. Another technique, used when the destination body has a tangible atmosphere, is called aerocapture, which can use the friction of the atmospheric drag to slow down a spacecraft enough to get into orbit. This is very risky, however, and it has never been tested for an orbit insertion. Generally the orbit insertion deceleration is performed with the main engine so that the spacecraft gets into a highly elliptical “capture orbit” and only later the apocenter can be lowered with further decelerations, or even using the atmospheric drag in a controlled way, called aerobraking, to lower the apocenter and circularize the orbit while minimizing the use of onboard fuel. To date, only a handful of NASA and ESA missions have performed aerobraking (Magellan, Mars Reconnaissance Orbiter, Trace Gas Orbiter, Venus Express, ...). The second type of orbit insertion is used for newly launched satellites and other spacecraft. The majority of space launch vehicles used today can only launch a payload into a very narrow range of orbits.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
EE-582: Lessons learned from the space exploration
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
Related lectures (17)
Related publications (6)

Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Datase

Davide Scaramuzza, Titus Cieslewski

Despite impressive results in visual-inertial state estimation in recent years, high speed trajectories with six degree of freedom motion remain challenging for existing estimation algorithms. Aggressive trajectories feature large accelerations and rapid r ...
2019

A Two Phase Heuristic Approach For The Dynamic Electric Autonomous Dial-a-Ride Problem

Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi

In the Dial-a-Ride-Problem (DARP) a fleet of vehicles provide shared-ride services to users specifying their origin, destination, and preferred arrival time. In the dynamic version of the DARP, some trips are booked in advance while others come in real-tim ...
2018

GPS based navigation performance analysis within and beyond the Space Service Volume for different transmitters’ antenna patterns

Pierre-André Farine, Cyril Botteron, Vincenzo Capuano, Paul David Blunt, Endrit Shehaj

In the last years, Global Navigation Satellite System (GNSS) based navigation in high earth orbits (HEOs) has become a research field of interest, since it can increase the spacecraft’s autonomy, reducing the operating costs. However, the GNSS availability ...
2017
Show more
Related concepts (4)
Private spaceflight
Private spaceflight refers to spaceflight developments that are not conducted by a government agency, such as NASA or ESA. During the early decades of the Space Age, the government space agencies of the Soviet Union and United States pioneered space technology in collaboration with affiliated design bureaus in the USSR and private companies in the US. They entirely funded both the development of new spaceflight technologies and the operational costs of spaceflight.
Reusable launch vehicle
A reusable launch vehicle has parts that can be recovered and reflown, while carrying payloads from the surface to outer space. Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as rocket engines and boosters can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly.
Launch vehicle
A launch vehicle is typically a rocket-powered vehicle designed to carry a payload (a crewed spacecraft or satellites) from Earth's surface or lower atmosphere to outer space. The most common form is the ballistic missile-shaped multistage rocket, but the term is more general and also encompasses vehicles like the Space Shuttle. Most launch vehicles operate from a launch pad, supported by a launch control center and systems such as vehicle assembly and fueling.
Show more
Related MOOCs (2)
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Space Mission Design and Operations
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.