Liar paradoxIn philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied. In "this sentence is a lie" the paradox is strengthened in order to make it amenable to more rigorous logical analysis. It is still generally called the "liar paradox" although abstraction is made precisely from the liar making the statement.
Set theorySet theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.
Russell's paradoxIn mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen.
Epimenides paradoxThe Epimenides paradox reveals a problem with self-reference in logic. It is named after the Cretan philosopher Epimenides of Knossos (alive circa 600 BC) who is credited with the original statement. A typical description of the problem is given in the book Gödel, Escher, Bach, by Douglas Hofstadter: Epimenides was a Cretan who made the immortal statement: "All Cretans are liars." A paradox of self-reference arises when one considers whether it is possible for Epimenides to have spoken the truth.
TruthTruth is the property of being in accord with fact or reality. In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs, propositions, and declarative sentences. Truth is usually held to be the opposite of falsehood. The concept of truth is discussed and debated in various contexts, including philosophy, art, theology, law, and science. Most human activities depend upon the concept, where its nature as a concept is assumed rather than being a subject of discussion, including journalism and everyday life.
Thought experimentA thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. The ancient Greek deiknymi, "was the most ancient pattern of mathematical proof", and existed before Euclidean mathematics, where the emphasis was on the conceptual, rather than on the experimental part of a thought-experiment. Johann Witt-Hansen established that Hans Christian Ørsted was the first to use the term Gedankenexperiment (from German: 'thought experiment') circa 1812.
Berry paradoxThe Berry paradox is a self-referential paradox arising from an expression like "The smallest positive integer not definable in under sixty letters" (a phrase with fifty-seven letters). Bertrand Russell, the first to discuss the paradox in print, attributed it to G. G. Berry (1867–1928), a junior librarian at Oxford's Bodleian Library. Russell called Berry "the only person in Oxford who understood mathematical logic". The paradox was called "Richard's paradox" by Jean-Yves Girard.
PhilosophyPhilosophy (love of wisdom in ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, values, mind, and language. It is a rational and critical inquiry that reflects on its own methods and assumptions. Historically, many of the individual sciences, like physics and psychology, formed part of philosophy. But they are considered separate academic disciplines in the modern sense of the term.
Paraconsistent logicA paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion. Inconsistency-tolerant logics have been discussed since at least 1910 (and arguably much earlier, for example in the writings of Aristotle); however, the term paraconsistent ("beside the consistent") was first coined in 1976, by the Peruvian philosopher Francisco Miró Quesada Cantuarias.
Set (mathematics)A set is the mathematical model for a collection of different things; a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics.