Concept

Hydrothermal carbonization

Summary
Hydrothermal carbonization (HTC) (also referred to as "aqueous carbonization at elevated temperature and pressure") is a chemical process for the conversion of organic compounds to structured carbons. It can be used to make a wide variety of nanostructured carbons, simple production of brown coal substitute, synthesis gas, liquid petroleum precursors and humus from biomass with release of energy. Technically the process imitates, within a few hours, the brown coal formation process (German "Inkohlung" literally "coalification") which takes place in nature over enormously longer geological time periods of 50,000 to 50 million years. It was investigated by Friedrich Bergius and first described in 1913. The carbon efficiency of most processes to convert organic matter to fuel is relatively low. I.e. the proportion of carbon contained in the biomass, which is later contained in the usable end product is relatively low: In poorly designed systems, the unused carbon escapes into the atmosphere as carbon dioxide, or, when fermented, as methane. Both gases are greenhouse gases with methane even more climate-active on a per molecule basis than . In addition, the heat which is released in these processes is not generally used. Advanced modern systems capture nearly all the gases and use the heat as part of the process or for district heating. The problem with the production of biodiesel from oil plants is the fact that only the energy contained in the fruit can be used. If the entire plant could be used for fuel production, the energy yield could be increased by a factor of three to five with the same cultivation area when growing fast-growing plants such as willow, poplar, miscanthus, hemp, reeds or forestry, while simultaneously reducing energy, fertilizer and herbicide use, with the possibility of using - for current energy plant cultivation - poor soil. Hydrothermal carbonization makes it possible - similar to the biomass-to-liquid process - to use almost all of the carbon contained in the biomass for fuel generation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.