The pericardium (: pericardia), also called pericardial sac, is a double-walled sac containing the heart and the roots of the great vessels. It has two layers, an outer layer made of strong inelastic connective tissue (fibrous pericardium), and an inner layer made of serous membrane (serous pericardium). It encloses the pericardial cavity, which contains pericardial fluid, and defines the middle mediastinum. It separates the heart from interference of other structures, protects it against infection and blunt trauma, and lubricates the heart's movements.
The English name originates from the Ancient Greek prefix peri- (περί) 'around' and the suffix -cardion (κάρδιον) 'heart'.
The pericardium is a tough fibroelastic sac which covers the heart from all sides except at the cardiac root (where the great vessels join the heart) and the bottom (where only the serous pericardium exists to cover the upper surface of the central tendon of diaphragm). The fibrous pericardium is semi-rigid, while the serous pericardium is quite pliable.
The same mesothelium that constitutes the serous pericardium also covers the heart as the epicardium, resulting in a continuous serous membrane invaginated onto itself as two opposing surfaces (over the fibrous pericardium and over the heart). This creates a pouch-like potential space around the heart enclosed between the two opposing serosal surfaces, known as the pericardial space or pericardial cavity, which is filled with a small amount of serous fluid to lubricate the heart's movements and cushions it from any external jerk or shock.
The fibrous pericardium is the outside layer of the pericardium, made up of dense and loose connective tissue. While capable of some change in shape, it is largely non-pliable, which acts to protect the heart against blunt forces and sudden pressure change from the outside. It is continuous with the outer adventitial layer of the neighboring great blood vessels, fused with the central fibrous area of the diaphragm on its posterior aspect and attached to the posterior surface of the sternum by the sternopericardial ligaments.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops in one of the coronary arteries of the heart, causing damage to the heart muscle. The most common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck or jaw. Often it occurs in the center or left side of the chest and lasts for more than a few minutes. The discomfort may occasionally feel like heartburn. Other symptoms may include shortness of breath, nausea, feeling faint, a cold sweat or feeling tired.
Pericarditis is inflammation of the pericardium, the fibrous sac surrounding the heart. Symptoms typically include sudden onset of sharp chest pain, which may also be felt in the shoulders, neck, or back. The pain is typically less severe when sitting up and more severe when lying down or breathing deeply. Other symptoms of pericarditis can include fever, weakness, palpitations, and shortness of breath. The onset of symptoms can occasionally be gradual rather than sudden.
The thoracic diaphragm, or simply the diaphragm (ˈdaɪəfɹæm; diáphragma), is a sheet of internal skeletal muscle in humans and other mammals that extends across the bottom of the thoracic cavity. The diaphragm is the most important muscle of respiration, and separates the thoracic cavity, containing the heart and lungs, from the abdominal cavity: as the diaphragm contracts, the volume of the thoracic cavity increases, creating a negative pressure there, which draws air into the lungs.
Brain natriuretic peptide (BNP) treatment increases heart function and decreases heart dilation after myocardial infarction (MI). Here, we investigated whether part of the cardioprotective effect of BNP in infarcted hearts related to improved neovascularis ...
Surgical sealants are widely used in cardiothoracic and vascular surgery essentially for hemostasis and sealing. Their adhesive properties have mainly been studied by clinical experiments. The objective of this study is to measure adhesion of the three mai ...
Melt electrowriting is a microscale manufacturing technique that uses polymer-based melts to create fibrous structures. An electric field is used to stabilize a continuous molten jet, which is then written onto a substrate as a microscale fiber. Herein, it ...