Olivier MartinOlivier J.F. Martin received the M.Sc. and Ph.D. degrees in physics in 1989 and 1994, respectively, from the Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland. In 1989, he joined IBM Zurich Research Laboratory, where he investigated thermal and optical properties of semiconductor laser diodes. Between 1994 and 1997 he was a research staff member at the Swiss Federal Institute of Technology, Zurich (ETHZ). In 1997 he received a Lecturer fellowship from the Swiss National Science Foundation (SNSF). During the period 1996-1999, he spent a year and a half in the U.S.A., as invited scientist at the University of California in San Diego (UCSD). In 2001 he received a Professorship grant from the SNSF and became Professor of Nano-Optics at the ETHZ. In 2003, he was appointed Professor of Nanophotonics and Optical Signal Processing at the Swiss Federal Institute of Technology, Lausanne (EPFL), where he is currently head of the Nanophotonics and Metrology Laboratory and Director of the Microengineering Section.
Hatice Altug2020-current Full Professor at the Institute of Bioengineering, EPFL, Switzerland2013-2020 Associate Professor (with tenure) at the Institute of Bioengineering, EPFL, Switzerland 2013 Associate Professor (with tenure) at Electrical and Computer Engineering Department of Boston University, USA 2007-2013 Assistant Professor (tenure-track) at Electrical and Computer Engineering Department of Boston University, USA 2007 Post-doctoral Fellow at Center for Engineering in Medicine of Harvard Medical School, USA 2000-2007 PhD. in Applied Physics at Stanford University, USA 1996-2000 B.S. in Physics at Bilkent University, Turkey
Nava SetterNava Setter completed MSc in Civil Engineering in the Technion (Israel) and PhD in Solid State Science in Penn. State University (USA) (1980). After post-doctoral work at the Universities of Oxford (UK) and Geneva (Switzerland), she joined an R&D institute in Haifa (Israel) where she became the head of the Electronic Ceramics Lab (1988). She began her affiliation with EPFL in 1989 as the Director of the Ceramics Laboratory, becoming Full Professor of Materials Science and Engineering in 1992. She had been Head of the Materials Department in the past and more recently has served as the Director of the Doctoral School for Materials.
Research at the Ceramics Laboratory, which Nava Setter directs, concerns the science and technology of functional ceramics focusing on piezoelectric and related materials: ferroelectrics, dielectrics, pyroelectrics and also ferromagnetics. The work includes fundamental and applied research and covers the various scales from the atoms to the final devices. Emphasis is given to micro- and nano-fabrication technology with ceramics and coupled theoretical and experimental studies of the functioning of ferroelectrics.
Her own research interests include ferroelectrics and piezoelectrics: in particular the effects of interfaces, finite-size and domain-wall phenomena, as well as structure-property relations and the pursuit of new applications. The leading thread in her work over the years has been the demonstration of how basic or fundamental concepts in materials - particularly ferroelectrics - can be utilized in a new way and/or in new types of devices. She has published over 450 scientific and technical papers.
Nava Setter is a Fellow of the Swiss Academy of Technical Sciences, the Institute of Electrical and Electronic Engineers (IEEE), and the World Academy of Ceramics. Among the awards she received are the Swiss-Korea Research Award, the ISIF outstanding achievement award, and the Ferroelectrics-IEEE recognition award. In 2010 her research was recognized by the European Union by the award of an ERC Advanced Investigator Grant. Recently she received the IEEE-UFFC Achievement Award (2011),the W.R. Buessem Award(2011), the Robert S. Sosman Award Lecture (American Ceramics Society) (2013), and the American Vacuum Society Recognition for Excellence in Leadership (2013).
Alexander TagantsevALEXANDER K. TAGANTSEV received the B.S. degree from St. Petersburg State University, in 1974, and Ph.D. degree from Ioffe Physico-Technical Institute, St. Petersburg, Russia, in 1982 in solid state physics. Before 1993, he worked in Ioffe Physico-Technical Institute, (1991-1993, head of laboratory), and St. Petersburg State Technical University (1991-1993, professor). He joined the ceramics laboratory of EPFL in 1993 where he was leading ( up to 2016) the section for Modeling and theory of Electroceramics. He is also currently engaged as a principle research fellow at Ioffe institute (St. Petersburg, Russia). Tagantsev is a theoretician of a broad domain of expertise from ferroelectricity and phonon physics to electrodynamics of superconductors and quantum optics. He is the author of key results on the theory of microwave dielectrics loss, dielectric polarization in crystalline materials, and relaxor ferroelectricity. He is also known in the field of ferroelectric thin films for elucidating works on the polarization switching and degradation in these systems. He authored or co-authored more than 300 scientific articles and two monograph (on domains in ferroics and tunable film bulk acoustic wave resonators). In 2007, Prof. Tagantsev was entitled to the Honors for lifetime achievement in the field of integrated ferroelectrics by the International Symposium on Integrated Ferroelectrics.
Mihai Adrian IonescuAdrian M. Ionescu is Full Professor at the Swiss Federal Institute of Technology, Lausanne, Switzerland. He received the B.S./M.S. and Ph.D. degrees from the Polytechnic Institute of Bucharest, Romania and the National Polytechnic Institute of Grenoble, France, in 1989 and 1997, respectively. He has held staff and/or visiting positions at LETI-CEA, Grenoble, France and INP Grenoble, France and Stanford University, USA, in 1998 and 1999. Dr. Ionescu has published more than 600 articles in international journals and conferences. He received many Best Paper Awards in international conferences, the Annual Award of the Technical Section of the Romanian Academy of Sciences in 1994 and the Blondel Medal in 2009 for contributions to the progress in engineering sciences in the domain of electronics. He is the 2013 recipient of the IBM Faculty Award in Engineering. He served the IEDM and VLSI conference technical committees and was the Technical Program Committee (Co)Chair of ESSDERC in 2006 and 2013. He is a member of the SATW. He is director of the Laboratory of Micro/Nanoelectronic Devices (NANOLAB).
Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006).