Summary
A physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse. In the 1960s Bernard Widrow and Ted Hoff developed ADALINE (Adaptive Linear Neuron) which used electrochemical cells called memistors (memory resistors) to emulate synapses of an artificial neuron. The memistors were implemented as 3-terminal devices operating based on the reversible electroplating of copper such that the resistance between two of the terminals is controlled by the integral of the current applied via the third terminal. The ADALINE circuitry was briefly commercialized by the Memistor Corporation in the 1960s enabling some applications in pattern recognition. However, since the memistors were not fabricated using integrated circuit fabrication techniques the technology was not scalable and was eventually abandoned as solid-state electronics became mature. In 1989 Carver Mead published his book Analog VLSI and Neural Systems, which spun off perhaps the most common variant of analog neural networks. The physical realization is implemented in analog VLSI. This is often implemented as field effect transistors in low inversion. Such devices can be modelled as translinear circuits. This is a technique described by Barrie Gilbert in several papers around mid 1970th, and in particular his Translinear Circuits from 1981. With this method circuits can be analyzed as a set of well-defined functions in steady-state, and such circuits assembled into complex networks.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.