Concept

Neuroscience of music

Summary
The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical emotion. Scientists working in this field may have training in cognitive neuroscience, neurology, neuroanatomy, psychology, music theory, computer science, and other relevant fields. The cognitive neuroscience of music represents a significant branch of music psychology, and is distinguished from related fields such as cognitive musicology in its reliance on direct observations of the brain and use of brain imaging techniques like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Sounds consist of waves of air molecules that vibrate at different frequencies. These waves travel to the basilar membrane in the cochlea of the inner ear. Different frequencies of sound will cause vibrations in different locations of the basilar membrane. We are able to hear different pitches because each sound wave with a unique frequency is correlated to a different location along the basilar membrane. This spatial arrangement of sounds and their respective frequencies being processed in the basilar membrane is known as tonotopy. When the hair cells on the basilar membrane move back and forth due to the vibrating sound waves, they release neurotransmitters and cause action potentials to occur down the auditory nerve. The auditory nerve then leads to several layers of synapses at numerous clusters of neurons, or nuclei, in the auditory brainstem. These nuclei are also tonotopically organized, and the process of achieving this tonotopy after the cochlea is not well understood. This tonotopy is in general maintained up to primary auditory cortex in mammals. A widely postulated mechanism for pitch processing in the early central auditory system is the phase-locking and mode-locking of action potentials to frequencies in a stimulus.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.