Summary
Learning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item. The goal of constructing the ranking model is to rank new, unseen lists in a similar way to rankings in the training data. Ranking is a central part of many information retrieval problems, such as document retrieval, collaborative filtering, sentiment analysis, and online advertising. A possible architecture of a machine-learned search engine is shown in the accompanying figure. Training data consists of queries and documents matching them together with the relevance degree of each match. It may be prepared manually by human assessors (or raters, as Google calls them), who check results for some queries and determine relevance of each result. It is not feasible to check the relevance of all documents, and so typically a technique called pooling is used — only the top few documents, retrieved by some existing ranking models are checked. This technique may introduce selection bias. Alternatively, training data may be derived automatically by analyzing clickthrough logs (i.e. search results which got clicks from users), query chains, or such search engines' features as Google's (since-replaced) SearchWiki. Clickthrough logs can be biased by the tendency of users to click on the top search results on the assumption that they are already well-ranked. Training data is used by a learning algorithm to produce a ranking model which computes the relevance of documents for actual queries. Typically, users expect a search query to complete in a short time (such as a few hundred milliseconds for web search), which makes it impossible to evaluate a complex ranking model on each document in the corpus, and so a two-phase scheme is used.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.