Concept

Schoenflies problem

In mathematics, the Schoenflies problem or Schoenflies theorem, of geometric topology is a sharpening of the Jordan curve theorem by Arthur Schoenflies. For Jordan curves in the plane it is often referred to as the Jordan–Schoenflies theorem. The original formulation of the Schoenflies problem states that not only does every simple closed curve in the plane separate the plane into two regions, one (the "inside") bounded and the other (the "outside") unbounded; but also that these two regions are homeomorphic to the inside and outside of a standard circle in the plane. An alternative statement is that if is a simple closed curve, then there is a homeomorphism such that is the unit circle in the plane. Elementary proofs can be found in , , and . The result can first be proved for polygons when the homeomorphism can be taken to be piecewise linear and the identity map off some compact set; the case of a continuous curve is then deduced by approximating by polygons. The theorem is also an immediate consequence of Carathéodory's extension theorem for conformal mappings, as discussed in . If the curve is smooth then the homeomorphism can be chosen to be a diffeomorphism. Proofs in this case rely on techniques from differential topology. Although direct proofs are possible (starting for example from the polygonal case), existence of the diffeomorphism can also be deduced by using the smooth Riemann mapping theorem for the interior and exterior of the curve in combination with the Alexander trick for diffeomorphisms of the circle and a result on smooth isotopy from differential topology. Such a theorem is valid only in two dimensions. In three dimensions there are counterexamples such as Alexander's horned sphere. Although they separate space into two regions, those regions are so twisted and knotted that they are not homeomorphic to the inside and outside of a normal sphere. For smooth or polygonal curves, the Jordan curve theorem can be proved in a straightforward way.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.